Question
upstudy study bank question image url

4. Complete the following. a) Simplify: i) \( \left(a-\frac{1}{a}\right)\left(a^{2}+1+\frac{1}{a^{2}}\right) \) ii) \( \left(a-\frac{1}{a}\right)^{2} \). b) Calculate the value of: i) \( a^{2}+\frac{1}{a^{2}} \), if \( a-\frac{1}{a}=3 \) ii) \( a^{3}-\frac{1}{a^{3}} \)

Ask by Burton Fitzgerald. in South Africa
Feb 03,2025

Real Tutor Solution

Tutor-Verified Answer

Answer

a) i) \( a^{3} - \frac{1}{a^{3}} \) ii) \( a^{2} + \frac{1}{a^{2}} - 2 \) b) i) 11 ii) 36

Solution

Certainly! Let's tackle each part of the problem step by step. --- ## **4. Complete the following.** ### **a) Simplify:** #### **i) \( \left(a - \frac{1}{a}\right)\left(a^{2} + 1 + \frac{1}{a^{2}}\right) \)** **Solution:** We can simplify the expression by expanding the multiplication: \[ \left(a - \frac{1}{a}\right)\left(a^{2} + 1 + \frac{1}{a^{2}}\right) \] Multiply each term in the first parenthesis by each term in the second parenthesis: \[ = a \cdot a^{2} + a \cdot 1 + a \cdot \frac{1}{a^{2}} - \frac{1}{a} \cdot a^{2} - \frac{1}{a} \cdot 1 - \frac{1}{a} \cdot \frac{1}{a^{2}} \] Simplify each term: \[ = a^{3} + a + \frac{a}{a^{2}} - \frac{a^{2}}{a} - \frac{1}{a} - \frac{1}{a^{3}} \] \[ = a^{3} + a + \frac{1}{a} - a - \frac{1}{a} - \frac{1}{a^{3}} \] Notice that some terms cancel out: \[ a - a = 0 \quad \text{and} \quad \frac{1}{a} - \frac{1}{a} = 0 \] So, we're left with: \[ = a^{3} - \frac{1}{a^{3}} \] **Final Answer:** \[ \left(a - \frac{1}{a}\right)\left(a^{2} + 1 + \frac{1}{a^{2}}\right) = a^{3} - \frac{1}{a^{3}} \] --- #### **ii) \( \left(a - \frac{1}{a}\right)^{2} \)** **Solution:** Expand the square using the formula \((x - y)^2 = x^2 - 2xy + y^2\): \[ \left(a - \frac{1}{a}\right)^{2} = a^{2} - 2 \cdot a \cdot \frac{1}{a} + \left(\frac{1}{a}\right)^{2} \] Simplify each term: \[ = a^{2} - 2 \cdot 1 + \frac{1}{a^{2}} \] \[ = a^{2} + \frac{1}{a^{2}} - 2 \] **Final Answer:** \[ \left(a - \frac{1}{a}\right)^{2} = a^{2} + \frac{1}{a^{2}} - 2 \] --- ### **b) Calculate the value of:** #### **i) \( a^{2} + \frac{1}{a^{2}} \), if \( a - \frac{1}{a} = 3 \)** **Solution:** We are given: \[ a - \frac{1}{a} = 3 \] Square both sides to find \( a^{2} + \frac{1}{a^{2}} \): \[ \left(a - \frac{1}{a}\right)^{2} = 3^{2} \] Expand the left side: \[ a^{2} - 2 \cdot a \cdot \frac{1}{a} + \frac{1}{a^{2}} = 9 \] Simplify: \[ a^{2} - 2 + \frac{1}{a^{2}} = 9 \] Now, solve for \( a^{2} + \frac{1}{a^{2}} \): \[ a^{2} + \frac{1}{a^{2}} = 9 + 2 = 11 \] **Final Answer:** \[ a^{2} + \frac{1}{a^{2}} = 11 \] --- #### **ii) \( a^{3} - \frac{1}{a^{3}} \)** **Solution:** We can use the identity: \[ a^{3} - \frac{1}{a^{3}} = \left(a - \frac{1}{a}\right)\left(a^{2} + 1 + \frac{1}{a^{2}}\right) \] From part **b.i**, we have: \[ a - \frac{1}{a} = 3 \quad \text{and} \quad a^{2} + \frac{1}{a^{2}} = 11 \] Substitute these values into the identity: \[ a^{3} - \frac{1}{a^{3}} = 3 \cdot (11 + 1) = 3 \cdot 12 = 36 \] **Final Answer:** \[ a^{3} - \frac{1}{a^{3}} = 36 \] ---

Reviewed and approved by the UpStudy tutoring team

error msg
Explain
Simplify this solution

Extra Insights

To simplify \( \left(a-\frac{1}{a}\right)\left(a^{2}+1+\frac{1}{a^{2}}\right) \), use the fact that \( a^2 + 1 + \frac{1}{a^2} = (a-\frac{1}{a})^2 + 2 \). Expanding gives \((a - \frac{1}{a})((a - \frac{1}{a})^2 + 2)\). Substituting \( x = a - \frac{1}{a} \), we can write it as \( x(x^2 + 2) = x^3 + 2x\). For part ii, \( \left(a-\frac{1}{a}\right)^{2} \) simplifies to \( a^2 - 2 + \frac{1}{a^2} = (a^2 + \frac{1}{a^2}) - 2 \). If \( a - \frac{1}{a} = 3 \), we first find \( a^2 + \frac{1}{a^2} \) using \( (a - \frac{1}{a})^2 = a^2 - 2 + \frac{1}{a^2} \rightarrow 9 = (a^2 + \frac{1}{a^2}) - 2 \). Thus, \( a^2 + \frac{1}{a^2} = 11 \). To find \( a^3 - \frac{1}{a^3} \), use the identity \( a^3 - \frac{1}{a^3} = (a - \frac{1}{a)((a^2 + \frac{1}{a^2})} \). Substitute \( a - \frac{1}{a} = 3 \) and \( a^2 + \frac{1}{a^2} = 11\). Thus, \( a^3 - \frac{1}{a^3} = 3 \times 11 = 33 \).

Related Questions

Try Premium now!
Try Premium and ask Thoth AI unlimited math questions now!
Maybe later Go Premium
Study can be a real struggle
Why not UpStudy it?
Select your plan below
Premium

You can enjoy

Start now
  • Step-by-step explanations
  • 24/7 expert live tutors
  • Unlimited number of questions
  • No interruptions
  • Full access to Answer and Solution
  • Full Access to PDF Chat, UpStudy Chat, Browsing Chat
Basic

Totally free but limited

  • Limited Solution
Welcome to UpStudy!
Please sign in to continue the Thoth AI Chat journey
Continue with Email
Or continue with
By clicking “Sign in”, you agree to our Terms of Use & Privacy Policy