Select the simplification that accurately explains the following statement. \[ \sqrt[2]{7}=7 \frac{1}{3} \] A. \( \left(7^{\frac{1}{2}}\right)^{3}=7^{\frac{1}{4}} \cdot 7^{\frac{1}{1}} \cdot 7^{\frac{1}{1}}=7^{\frac{1}{3}+\frac{1}{1}}=7^{1}=7^{1}=7 \) B. \( \left(7^{\frac{1}{4}}\right)^{3}=7^{\frac{1}{4}} \cdot 7^{\frac{1}{4}} \cdot 7^{\frac{1}{3}}=7 \cdot\left(\frac{1}{3}+\frac{1}{3}+\frac{1}{3}\right)-7 \cdot \frac{3}{3}=7 \cdot 1=7 \) c. \( \left(7^{\frac{1}{2}}\right)^{3}=7^{\frac{1}{2}} \cdot 7^{\frac{1}{3}} \cdot 7^{\frac{1}{3}}=7 \cdot 7^{\frac{1}{1}}=3 \cdot \frac{1}{3} \cdot 7=1 \cdot 7=7 \) D. \( \left(7^{\frac{1}{3}}\right)^{3}=7^{\frac{1}{4}} \cdot 7^{\frac{1}{4}} \cdot 7^{\frac{1}{3}}=7^{\frac{1}{3}} \cdot \frac{1}{4} \cdot \frac{1}{4}=7^{\frac{1}{1}}=7^{1}=7 \)
Real Tutor Solution
Answer
Solution
Sign in to Unlock Answers for Free!
A Learning Platform Trusted by Millions of Real Students and Teachers.
Reviewed and approved by the UpStudy tutoring team
Bonus Knowledge
Let’s first dive into a little mathematical fun. The expression \( \sqrt[2]{7} \) represents the square root of 7, which is approximately 2.645751311... So, claiming that it equals \( 7 \frac{1}{3} \) (or 7.333...) would be a massive stretch! The correct conclusions must align with the basic properties of exponents as you navigate through those options. Now, onto the practical aspect! When simplifying expressions with exponents, remember that the laws of exponents say you add the exponents when multiplying the same base. So, instead of mixing terms, focus on clarity: separate out the bases and carefully handle the fractions. This will save you from missteps and keep your math crisp and clear!