Select the simplification that accurately explains the following statement. \[ \sqrt[2]{7}=7 \frac{1}{3} \] A. \( \left(7^{\frac{1}{2}}\right)^{3}=7^{\frac{1}{4}} \cdot 7^{\frac{1}{1}} \cdot 7^{\frac{1}{1}}=7^{\frac{1}{3}+\frac{1}{1}}=7^{1}=7^{1}=7 \) B. \( \left(7^{\frac{1}{4}}\right)^{3}=7^{\frac{1}{4}} \cdot 7^{\frac{1}{4}} \cdot 7^{\frac{1}{3}}=7 \cdot\left(\frac{1}{3}+\frac{1}{3}+\frac{1}{3}\right)-7 \cdot \frac{3}{3}=7 \cdot 1=7 \) c. \( \left(7^{\frac{1}{2}}\right)^{3}=7^{\frac{1}{2}} \cdot 7^{\frac{1}{3}} \cdot 7^{\frac{1}{3}}=7 \cdot 7^{\frac{1}{1}}=3 \cdot \frac{1}{3} \cdot 7=1 \cdot 7=7 \) D. \( \left(7^{\frac{1}{3}}\right)^{3}=7^{\frac{1}{4}} \cdot 7^{\frac{1}{4}} \cdot 7^{\frac{1}{3}}=7^{\frac{1}{3}} \cdot \frac{1}{4} \cdot \frac{1}{4}=7^{\frac{1}{1}}=7^{1}=7 \)
Solución de tutoría real
Responder
Solución
¡Inicia sesión para desbloquear respuestas gratis!
Una plataforma de aprendizaje en la que confían millones de estudiantes y profesores reales.
Revisado y aprobado por el equipo de tutoría de UpStudy
Bonus Knowledge
Let’s first dive into a little mathematical fun. The expression \( \sqrt[2]{7} \) represents the square root of 7, which is approximately 2.645751311... So, claiming that it equals \( 7 \frac{1}{3} \) (or 7.333...) would be a massive stretch! The correct conclusions must align with the basic properties of exponents as you navigate through those options. Now, onto the practical aspect! When simplifying expressions with exponents, remember that the laws of exponents say you add the exponents when multiplying the same base. So, instead of mixing terms, focus on clarity: separate out the bases and carefully handle the fractions. This will save you from missteps and keep your math crisp and clear!