Question
upstudy study bank question image url

Use a dot product to find the angle between each pair of vectors (to the nearest tenth of a degree). 13. \( u=\langle 1,4\rangle, v=\langle-3,-2\rangle \) 14. \( \mathrm{r}=\langle 7,6\rangle, \mathrm{s}=\langle 2,9\rangle \)

Ask by Wagner Robbins. in the United States
Jan 23,2025

Real Tutor Solution

Tutor-Verified Answer

Answer

**Problem 13:** - Vectors: \( \mathbf{u} = \langle 1, 4 \rangle \), \( \mathbf{v} = \langle -3, -2 \rangle \) - Angle: Approximately **136.3 degrees** **Problem 14:** - Vectors: \( \mathbf{r} = \langle 7, 6 \rangle \), \( \mathbf{s} = \langle 2, 9 \rangle \) - Angle: Approximately **36.9 degrees**

Solution

To find the angle between two vectors using the **dot product**, you can use the following formula: \[ \cos \theta = \frac{\mathbf{a} \cdot \mathbf{b}}{|\mathbf{a}| \, |\mathbf{b}|} \] Where: - \(\mathbf{a} \cdot \mathbf{b}\) is the dot product of vectors \(\mathbf{a}\) and \(\mathbf{b}\). - \(|\mathbf{a}|\) and \(|\mathbf{b}|\) are the magnitudes (lengths) of the vectors. - \(\theta\) is the angle between the vectors. The angle \(\theta\) can then be found by taking the inverse cosine (\(\cos^{-1}\)) of the result. Let's apply this method to the given problems. --- ### Problem 13 **Given Vectors:** \[ \mathbf{u} = \langle 1, 4 \rangle, \quad \mathbf{v} = \langle -3, -2 \rangle \] **Step 1: Compute the Dot Product (\(\mathbf{u} \cdot \mathbf{v}\))** \[ \mathbf{u} \cdot \mathbf{v} = (1)(-3) + (4)(-2) = -3 - 8 = -11 \] **Step 2: Compute the Magnitudes (\(|\mathbf{u}|\) and \(|\mathbf{v}|\))** \[ |\mathbf{u}| = \sqrt{1^2 + 4^2} = \sqrt{1 + 16} = \sqrt{17} \approx 4.1231 \] \[ |\mathbf{v}| = \sqrt{(-3)^2 + (-2)^2} = \sqrt{9 + 4} = \sqrt{13} \approx 3.6056 \] **Step 3: Compute \(\cos \theta\)** \[ \cos \theta = \frac{\mathbf{u} \cdot \mathbf{v}}{|\mathbf{u}| \, |\mathbf{v}|} = \frac{-11}{4.1231 \times 3.6056} \approx \frac{-11}{14.837} \approx -0.7415 \] **Step 4: Compute the Angle (\(\theta\))** \[ \theta = \cos^{-1}(-0.7415) \approx 136.3^\circ \] **Answer:** The angle between \(\mathbf{u}\) and \(\mathbf{v}\) is approximately **136.3 degrees**. --- ### Problem 14 **Given Vectors:** \[ \mathbf{r} = \langle 7, 6 \rangle, \quad \mathbf{s} = \langle 2, 9 \rangle \] **Step 1: Compute the Dot Product (\(\mathbf{r} \cdot \mathbf{s}\))** \[ \mathbf{r} \cdot \mathbf{s} = (7)(2) + (6)(9) = 14 + 54 = 68 \] **Step 2: Compute the Magnitudes (\(|\mathbf{r}|\) and \(|\mathbf{s}|\))** \[ |\mathbf{r}| = \sqrt{7^2 + 6^2} = \sqrt{49 + 36} = \sqrt{85} \approx 9.2195 \] \[ |\mathbf{s}| = \sqrt{2^2 + 9^2} = \sqrt{4 + 81} = \sqrt{85} \approx 9.2195 \] **Step 3: Compute \(\cos \theta\)** \[ \cos \theta = \frac{\mathbf{r} \cdot \mathbf{s}}{|\mathbf{r}| \, |\mathbf{s}|} = \frac{68}{9.2195 \times 9.2195} = \frac{68}{85} \approx 0.8 \] **Step 4: Compute the Angle (\(\theta\))** \[ \theta = \cos^{-1}(0.8) \approx 36.9^\circ \] **Answer:** The angle between \(\mathbf{r}\) and \(\mathbf{s}\) is approximately **36.9 degrees**. ---

Reviewed and approved by the UpStudy tutoring team

error msg
Explain
Simplify this solution

Beyond the Answer

To find the angle between each pair of vectors using the dot product, we use the formula: \[ \cos(\theta) = \frac{u \cdot v}{\|u\| \|v\|} \] where \( u \cdot v \) is the dot product and \( \|u\|, \|v\| \) are the magnitudes of the vectors. **For \( u=\langle 1,4\rangle \) and \( v=\langle-3,-2\rangle \):** 1. Calculate the dot product: \[ u \cdot v = 1 \cdot (-3) + 4 \cdot (-2) = -3 - 8 = -11 \] 2. Calculate the magnitudes: \[ \|u\| = \sqrt{1^2 + 4^2} = \sqrt{1 + 16} = \sqrt{17} \] \[ \|v\| = \sqrt{(-3)^2 + (-2)^2} = \sqrt{9 + 4} = \sqrt{13} \] 3. Find cos(theta): \[ \cos(\theta) = \frac{-11}{\sqrt{17} \cdot \sqrt{13}} \approx \frac{-11}{14.832} \approx -0.7402 \] \(\theta = \cos^{-1}(-0.7402) \approx 137.1^\circ\) --- **For \( r=\langle 7,6\rangle \) and \( s=\langle 2,9\rangle \):** 1. Calculate the dot product: \[ r \cdot s = 7 \cdot 2 + 6 \cdot 9 = 14 + 54 = 68 \] 2. Calculate the magnitudes: \[ \|r\| = \sqrt{7^2 + 6^2} = \sqrt{49 + 36} = \sqrt{85} \] \[ \|s\| = \sqrt{2^2 + 9^2} = \sqrt{4 + 81} = \sqrt{85} \] 3. Find cos(theta): \[ \cos(\theta) = \frac{68}{\sqrt{85} \cdot \sqrt{85}} = \frac{68}{85} \approx 0.8 \] \(\theta = \cos^{-1}(0.8) \approx 36.9^\circ\) --- Thus, the angles between the vectors are approximately \(137.1^\circ\) for \(u\) and \(v\), and \(36.9^\circ\) for \(r\) and \(s\).

Latest Pre Calculus Questions

Try Premium now!
Try Premium and ask Thoth AI unlimited math questions now!
Maybe later Go Premium
Study can be a real struggle
Why not UpStudy it?
Select your plan below
Premium

You can enjoy

Start now
  • Step-by-step explanations
  • 24/7 expert live tutors
  • Unlimited number of questions
  • No interruptions
  • Full access to Answer and Solution
  • Full Access to PDF Chat, UpStudy Chat, Browsing Chat
Basic

Totally free but limited

  • Limited Solution
Welcome to UpStudy!
Please sign in to continue the Thoth AI Chat journey
Continue with Email
Or continue with
By clicking “Sign in”, you agree to our Terms of Use & Privacy Policy