Use a dot product to find the angle between each pair of vectors (to the nearest tenth of a degree). 13. \( u=\langle 1,4\rangle, v=\langle-3,-2\rangle \) 14. \( \mathrm{r}=\langle 7,6\rangle, \mathrm{s}=\langle 2,9\rangle \)
Real Tutor Solution
Answer
Solution
Reviewed and approved by the UpStudy tutoring team
Beyond the Answer
To find the angle between each pair of vectors using the dot product, we use the formula: \[ \cos(\theta) = \frac{u \cdot v}{\|u\| \|v\|} \] where \( u \cdot v \) is the dot product and \( \|u\|, \|v\| \) are the magnitudes of the vectors. **For \( u=\langle 1,4\rangle \) and \( v=\langle-3,-2\rangle \):** 1. Calculate the dot product: \[ u \cdot v = 1 \cdot (-3) + 4 \cdot (-2) = -3 - 8 = -11 \] 2. Calculate the magnitudes: \[ \|u\| = \sqrt{1^2 + 4^2} = \sqrt{1 + 16} = \sqrt{17} \] \[ \|v\| = \sqrt{(-3)^2 + (-2)^2} = \sqrt{9 + 4} = \sqrt{13} \] 3. Find cos(theta): \[ \cos(\theta) = \frac{-11}{\sqrt{17} \cdot \sqrt{13}} \approx \frac{-11}{14.832} \approx -0.7402 \] \(\theta = \cos^{-1}(-0.7402) \approx 137.1^\circ\) --- **For \( r=\langle 7,6\rangle \) and \( s=\langle 2,9\rangle \):** 1. Calculate the dot product: \[ r \cdot s = 7 \cdot 2 + 6 \cdot 9 = 14 + 54 = 68 \] 2. Calculate the magnitudes: \[ \|r\| = \sqrt{7^2 + 6^2} = \sqrt{49 + 36} = \sqrt{85} \] \[ \|s\| = \sqrt{2^2 + 9^2} = \sqrt{4 + 81} = \sqrt{85} \] 3. Find cos(theta): \[ \cos(\theta) = \frac{68}{\sqrt{85} \cdot \sqrt{85}} = \frac{68}{85} \approx 0.8 \] \(\theta = \cos^{-1}(0.8) \approx 36.9^\circ\) --- Thus, the angles between the vectors are approximately \(137.1^\circ\) for \(u\) and \(v\), and \(36.9^\circ\) for \(r\) and \(s\).