Pregunta
upstudy study bank question image url

Use a dot product to find the angle between each pair of vectors (to the nearest tenth of a degree). 13. \( u=\langle 1,4\rangle, v=\langle-3,-2\rangle \) 14. \( \mathrm{r}=\langle 7,6\rangle, \mathrm{s}=\langle 2,9\rangle \)

Ask by Wagner Robbins. in the United States
Jan 23,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

**Problem 13:** - Vectors: \( \mathbf{u} = \langle 1, 4 \rangle \), \( \mathbf{v} = \langle -3, -2 \rangle \) - Angle: Approximately **136.3 degrees** **Problem 14:** - Vectors: \( \mathbf{r} = \langle 7, 6 \rangle \), \( \mathbf{s} = \langle 2, 9 \rangle \) - Angle: Approximately **36.9 degrees**

Solución

To find the angle between two vectors using the **dot product**, you can use the following formula: \[ \cos \theta = \frac{\mathbf{a} \cdot \mathbf{b}}{|\mathbf{a}| \, |\mathbf{b}|} \] Where: - \(\mathbf{a} \cdot \mathbf{b}\) is the dot product of vectors \(\mathbf{a}\) and \(\mathbf{b}\). - \(|\mathbf{a}|\) and \(|\mathbf{b}|\) are the magnitudes (lengths) of the vectors. - \(\theta\) is the angle between the vectors. The angle \(\theta\) can then be found by taking the inverse cosine (\(\cos^{-1}\)) of the result. Let's apply this method to the given problems. --- ### Problem 13 **Given Vectors:** \[ \mathbf{u} = \langle 1, 4 \rangle, \quad \mathbf{v} = \langle -3, -2 \rangle \] **Step 1: Compute the Dot Product (\(\mathbf{u} \cdot \mathbf{v}\))** \[ \mathbf{u} \cdot \mathbf{v} = (1)(-3) + (4)(-2) = -3 - 8 = -11 \] **Step 2: Compute the Magnitudes (\(|\mathbf{u}|\) and \(|\mathbf{v}|\))** \[ |\mathbf{u}| = \sqrt{1^2 + 4^2} = \sqrt{1 + 16} = \sqrt{17} \approx 4.1231 \] \[ |\mathbf{v}| = \sqrt{(-3)^2 + (-2)^2} = \sqrt{9 + 4} = \sqrt{13} \approx 3.6056 \] **Step 3: Compute \(\cos \theta\)** \[ \cos \theta = \frac{\mathbf{u} \cdot \mathbf{v}}{|\mathbf{u}| \, |\mathbf{v}|} = \frac{-11}{4.1231 \times 3.6056} \approx \frac{-11}{14.837} \approx -0.7415 \] **Step 4: Compute the Angle (\(\theta\))** \[ \theta = \cos^{-1}(-0.7415) \approx 136.3^\circ \] **Answer:** The angle between \(\mathbf{u}\) and \(\mathbf{v}\) is approximately **136.3 degrees**. --- ### Problem 14 **Given Vectors:** \[ \mathbf{r} = \langle 7, 6 \rangle, \quad \mathbf{s} = \langle 2, 9 \rangle \] **Step 1: Compute the Dot Product (\(\mathbf{r} \cdot \mathbf{s}\))** \[ \mathbf{r} \cdot \mathbf{s} = (7)(2) + (6)(9) = 14 + 54 = 68 \] **Step 2: Compute the Magnitudes (\(|\mathbf{r}|\) and \(|\mathbf{s}|\))** \[ |\mathbf{r}| = \sqrt{7^2 + 6^2} = \sqrt{49 + 36} = \sqrt{85} \approx 9.2195 \] \[ |\mathbf{s}| = \sqrt{2^2 + 9^2} = \sqrt{4 + 81} = \sqrt{85} \approx 9.2195 \] **Step 3: Compute \(\cos \theta\)** \[ \cos \theta = \frac{\mathbf{r} \cdot \mathbf{s}}{|\mathbf{r}| \, |\mathbf{s}|} = \frac{68}{9.2195 \times 9.2195} = \frac{68}{85} \approx 0.8 \] **Step 4: Compute the Angle (\(\theta\))** \[ \theta = \cos^{-1}(0.8) \approx 36.9^\circ \] **Answer:** The angle between \(\mathbf{r}\) and \(\mathbf{s}\) is approximately **36.9 degrees**. ---

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Beyond the Answer

To find the angle between each pair of vectors using the dot product, we use the formula: \[ \cos(\theta) = \frac{u \cdot v}{\|u\| \|v\|} \] where \( u \cdot v \) is the dot product and \( \|u\|, \|v\| \) are the magnitudes of the vectors. **For \( u=\langle 1,4\rangle \) and \( v=\langle-3,-2\rangle \):** 1. Calculate the dot product: \[ u \cdot v = 1 \cdot (-3) + 4 \cdot (-2) = -3 - 8 = -11 \] 2. Calculate the magnitudes: \[ \|u\| = \sqrt{1^2 + 4^2} = \sqrt{1 + 16} = \sqrt{17} \] \[ \|v\| = \sqrt{(-3)^2 + (-2)^2} = \sqrt{9 + 4} = \sqrt{13} \] 3. Find cos(theta): \[ \cos(\theta) = \frac{-11}{\sqrt{17} \cdot \sqrt{13}} \approx \frac{-11}{14.832} \approx -0.7402 \] \(\theta = \cos^{-1}(-0.7402) \approx 137.1^\circ\) --- **For \( r=\langle 7,6\rangle \) and \( s=\langle 2,9\rangle \):** 1. Calculate the dot product: \[ r \cdot s = 7 \cdot 2 + 6 \cdot 9 = 14 + 54 = 68 \] 2. Calculate the magnitudes: \[ \|r\| = \sqrt{7^2 + 6^2} = \sqrt{49 + 36} = \sqrt{85} \] \[ \|s\| = \sqrt{2^2 + 9^2} = \sqrt{4 + 81} = \sqrt{85} \] 3. Find cos(theta): \[ \cos(\theta) = \frac{68}{\sqrt{85} \cdot \sqrt{85}} = \frac{68}{85} \approx 0.8 \] \(\theta = \cos^{-1}(0.8) \approx 36.9^\circ\) --- Thus, the angles between the vectors are approximately \(137.1^\circ\) for \(u\) and \(v\), and \(36.9^\circ\) for \(r\) and \(s\).

preguntas relacionadas

Latest Pre Calculus Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad