Question
upstudy study bank question image url

Find all values of \( \mu \) if \( \rho(A)=3 \), where (Hint change row \( R_{A A} \) ) \( A=\left[\begin{array}{rrrr}\mu & -1 & 0 & 0 \\ 0 & \mu & -1 & 0 \\ -6 & 11 & -6 & 1 \\ 0 & 0 & \mu & -1\end{array}\right] \)

Ask by Gross Garza. in India
Dec 17,2024

Real Tutor Solution

Tutor-Verified Answer

Answer

The values of \( \mu \) for which the rank of matrix \( A \) is 3 are all real numbers except \( \frac{11 + \sqrt{265}}{12} \) and \( \frac{11 - \sqrt{265}}{12} \).

Solution

Sign in to Unlock Answers for Free!

A Learning Platform Trusted by Millions of Real Students and Teachers.

star-icon Unlock

Reviewed and approved by the UpStudy tutoring team

Bonus Knowledge

To find the values of \( \mu \) such that the rank \( \rho(A) = 3 \), we need to perform some row operations and analyze the determinant of the relevant submatrices. First, consider the matrix \( A \): \[ A = \begin{bmatrix} \mu & -1 & 0 & 0 \\ 0 & \mu & -1 & 0 \\ -6 & 11 & -6 & 1 \\ 0 & 0 & \mu & -1 \end{bmatrix} \] To facilitate further analysis, we apply row operations. Let's change row \( R_{1} \) by adding 6 times \( R_{3} \) to it: \[ R_{1} \rightarrow R_{1} + 6R_{3} \] This leads to the following changes: \[ R_{1} = \mu + 6(-6) = \mu - 36, \quad -1 + 6(11) = -1 + 66 = 65, \quad 0 + 6(-6) = -36, \quad 0 + 6(1) = 6 \] Thus, the modified matrix becomes: \[ A = \begin{bmatrix} \mu - 36 & 65 & -36 & 6 \\ 0 & \mu & -1 & 0 \\ -6 & 11 & -6 & 1 \\ 0 & 0 & \mu & -1 \end{bmatrix} \] Next, we can focus on the submatrix formed by the first three rows: \[ B = \begin{bmatrix} \mu - 36 & 65 & -36 \\ 0 & \mu & -1 \\ -6 & 11 & -6 \end{bmatrix} \] For \( \rho(A) \) to equal 3, the determinant of this matrix should not equal zero: \[ \det(B) = \begin{vmatrix} \mu - 36 & 65 & -36 \\ 0 & \mu & -1 \\ -6 & 11 & -6 \end{vmatrix} \] Calculating this determinant, we can expand along the first row (the upper triangular form makes it easier): \[ \det(B) = (\mu - 36) \cdot \begin{vmatrix} \mu & -1 \\ 11 & -6 \end{vmatrix} - 65 \cdot \begin{vmatrix} 0 & -1 \\ -6 & -6 \end{vmatrix} - 36 \cdot \begin{vmatrix} 0 & \mu \\ -6 & 11 \end{vmatrix} \] Calculating the 2x2 determinants: 1. \( \begin{vmatrix} \mu & -1 \\ 11 & -6 \end{vmatrix} = \mu(-6) - (-1)(11) = -6\mu + 11 \) 2. \( \begin{vmatrix} 0 & -1 \\ -6 & -6 \end{vmatrix} = 0 \cdot (-6) - (-1)(-6) = -6 \) 3. \( \begin{vmatrix} 0 & \mu \\ -6 & 11 \end{vmatrix} = 0 \cdot 11 - \mu(-6) = 6\mu \) Thus: \[ \det(B) = (\mu - 36)(-6\mu + 11) + 65 \cdot 6 - 36 \cdot 6\mu \] Simplifying: \[ \det(B) = -6\mu^2 + 11\mu + 390 - 216\mu = -6\mu^2 - 205\mu + 390 \] Set \( \det(B) \neq 0 \) to ensure rank 3: Solving \( -6\mu^2 - 205\mu + 390 = 0 \): Use the quadratic formula \( \mu = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \): Here, \( a = -6, b = -205, c = 390 \): \[ \Delta = (-205)^2 - 4(-6)(390) = 42025 + 9360 = 51385 \] Calculating roots: \[ \mu = \frac{205 \pm \sqrt{51385}}{-12} \] Approximately calculate \( \sqrt{51385} \approx 226.

Related Questions

Latest Other Questions

Numéro d'étudiant : 22007890 La qualité de la rédaction sera prise en compte. Exercice 1. Soit \[ \mathcal{B}=\left\{\left[\begin{array}{ll} 1 & 0 \\ 0 & 0 \end{array}\right],\left[\begin{array}{ll} 0 & 1 \\ 0 & 0 \end{array}\right],\left[\begin{array}{ll} 0 & 0 \\ 1 & 0 \end{array}\right],\left[\begin{array}{ll} 0 & 0 \\ 0 & 1 \end{array}\right]\right\} \] la base canonique de \( \operatorname{Mat}_{2}(\mathbb{R}) \) et soit \( f: \operatorname{Mat}_{2}(\mathbb{R}) \rightarrow \operatorname{Mat}_{2}(\mathbb{R}) \) l'endomorphisme de \( \operatorname{Mat}_{2}(\mathbb{R}) \) tel que, en base canonique, \[ f\left(\left[\begin{array}{ll} x_{1} & x_{2} \\ x_{3} & x_{4} \end{array}\right]\right)=\left(\left[\begin{array}{cc} x_{1}+2 x_{3} & 2 x_{1}-x_{2}+4 x_{3}-2 x_{4} \\ -x_{3} & -2 x_{3}+x_{4} \end{array}\right]\right) \] (a) Montrer que \[ A=\mu_{\mathcal{B}, \mathcal{B}}(f)=\left(\begin{array}{cccc} 1 & 0 & 2 & 0 \\ 2 & -1 & 4 & -2 \\ 0 & 0 & -1 & 0 \\ 0 & 0 & -2 & 1 \end{array}\right) \] où \( \mu_{\mathcal{B}, \mathcal{B}}(f) \) est la matrice associée à \( f \) dans la base canonique. \( ~ \) trer que l'endomorphisme \( f \) est diagonalisable. Déterminer une base \( \mathcal{B}^{\prime} \) de \( \operatorname{Mat}_{2}(\mathbb{R}) \) formée de vecteurs propres de \( \operatorname{Mat}_{2}(\mathbb{R}) \), la matrice de changement de base \( P:=\mu_{\mathcal{B}^{\prime}, \mathcal{B}}\left(\operatorname{Id}_{\mathrm{Mat}_{2}(\mathbb{R})}\right) \) et la matrice diagonale \( D:=\mu_{\mathcal{B}^{\prime}, \mathcal{B}^{\prime}}(f) \) telles que \[ \mu_{\mathcal{B}^{\prime}, \mathcal{B}^{\prime}}(f)=\left(\mu_{\mathcal{B}^{\prime}, \mathcal{B}}\left(\operatorname{Id}_{\operatorname{Mat}_{2}(\mathbb{R})}\right)\right)^{-1} \mu_{\mathcal{B}, \mathcal{B}}(f) \mu_{\mathcal{B}^{\prime}, \mathcal{B}}\left(\operatorname{Id}_{\operatorname{Mat}_{2}(\mathbb{R})}\right) \] Autrement dit, \[ D=P^{-1} A P \] où \( A=\mu_{\mathcal{B}, \mathcal{B}}(f) \).
Other France Jan 22, 2025
Numéro d'étudiant : La qualité de la rédaction sera prise en compte. Exercice 1. Soit \[ \mathcal{B}=\left\{\left[\begin{array}{ll} 1 & 0 \\ 0 & 0 \end{array}\right],\left[\begin{array}{ll} 0 & 1 \\ 0 & 0 \end{array}\right],\left[\begin{array}{ll} 0 & 0 \\ 1 & 0 \end{array}\right],\left[\begin{array}{ll} 0 & 0 \\ 0 & 1 \end{array}\right]\right\} \] la base canonique de \( \operatorname{Mat}_{2}(\mathbb{R}) \) et soit \( f: \operatorname{Mat}_{2}(\mathbb{R}) \rightarrow \operatorname{Mat}_{2}(\mathbb{R}) \) l'endomorphisme de \( \operatorname{Mat}_{2}(\mathbb{R}) \) tel que, en base canonique, \[ f\left(\left[\begin{array}{ll} x_{1} & x_{2} \\ x_{3} & x_{4} \end{array}\right]\right)=\left(\left[\begin{array}{cc} x_{1}+2 x_{3} & 2 x_{1}-x_{2}+4 x_{3}-2 x_{4} \\ -x_{3} & -2 x_{3}+x_{4} \end{array}\right]\right) \] (a) Montrer que \[ A=\mu_{\mathcal{B}, \mathcal{B}}(f)=\left(\begin{array}{cccc} 1 & 0 & 2 & 0 \\ 2 & -1 & 4 & -2 \\ 0 & 0 & -1 & 0 \\ 0 & 0 & -2 & 1 \end{array}\right) \] où \( \mu_{\mathcal{B}, \mathcal{B}}(f) \) est la matrice associée à \( f \) dans la base canonique. (b) Déterminer le polynôme caractéristique \( \chi_{f}(x) \). (c) Déterminer les valeurs propres de \( f \), leurs multiplicités algébriques et montrer que l'endomorphisme \( f \) est diagonalisable. (d) Déterminer une base \( \mathcal{B}^{\prime} \) de \( \operatorname{Mat}_{2}(\mathbb{R}) \) formée de vecteurs propres de \( \operatorname{Mat}_{2}(\mathbb{R}) \), la matrice de changement de base \( P:=\mu_{\mathcal{B}^{\prime}, \mathcal{B}}\left(\operatorname{Id}_{\operatorname{Mat}_{2}(\mathbb{R})}\right) \) et la matrice diagonale \( D:=\mu_{\mathcal{B}^{\prime}, \mathcal{B}^{\prime}}(f) \) telles que \[ \mu_{\mathcal{B}^{\prime}, \mathcal{B}^{\prime}}(f)=\left(\mu_{\mathcal{B}^{\prime}, \mathcal{B}}\left(\operatorname{Id}_{\operatorname{Mat}_{2}(\mathbb{R})}\right)\right)^{-1} \mu_{\mathcal{B}, \mathcal{B}}(f) \mu_{\mathcal{B}^{\prime}, \mathcal{B}}\left(\operatorname{Id}_{\operatorname{Mat}_{2}(\mathbb{R})}\right) \] Autrement dit, \[ D=P^{-1} A P \] où \( A=\mu_{\mathcal{B}, \mathcal{B}}(f) \).
Other France Jan 22, 2025
Try Premium now!
Try Premium and ask Thoth AI unlimited math questions now!
Maybe later Go Premium
Study can be a real struggle
Why not UpStudy it?
Select your plan below
Premium

You can enjoy

Start now
  • Step-by-step explanations
  • 24/7 expert live tutors
  • Unlimited number of questions
  • No interruptions
  • Full access to Answer and Solution
  • Full Access to PDF Chat, UpStudy Chat, Browsing Chat
Basic

Totally free but limited

  • Limited Solution
Welcome to UpStudy!
Please sign in to continue the Thoth AI Chat journey
Continue with Email
Or continue with
By clicking “Sign in”, you agree to our Terms of Use & Privacy Policy