Find all values of \( \mu \) if \( \rho(A)=3 \), where (Hint change row \( R_{A A} \) ) \( A=\left[\begin{array}{rrrr}\mu & -1 & 0 & 0 \\ 0 & \mu & -1 & 0 \\ -6 & 11 & -6 & 1 \\ 0 & 0 & \mu & -1\end{array}\right] \)
Real Tutor Solution
Answer
Solution
Sign in to Unlock Answers for Free!
A Learning Platform Trusted by Millions of Real Students and Teachers.
Reviewed and approved by the UpStudy tutoring team
Bonus Knowledge
To find the values of \( \mu \) such that the rank \( \rho(A) = 3 \), we need to perform some row operations and analyze the determinant of the relevant submatrices. First, consider the matrix \( A \): \[ A = \begin{bmatrix} \mu & -1 & 0 & 0 \\ 0 & \mu & -1 & 0 \\ -6 & 11 & -6 & 1 \\ 0 & 0 & \mu & -1 \end{bmatrix} \] To facilitate further analysis, we apply row operations. Let's change row \( R_{1} \) by adding 6 times \( R_{3} \) to it: \[ R_{1} \rightarrow R_{1} + 6R_{3} \] This leads to the following changes: \[ R_{1} = \mu + 6(-6) = \mu - 36, \quad -1 + 6(11) = -1 + 66 = 65, \quad 0 + 6(-6) = -36, \quad 0 + 6(1) = 6 \] Thus, the modified matrix becomes: \[ A = \begin{bmatrix} \mu - 36 & 65 & -36 & 6 \\ 0 & \mu & -1 & 0 \\ -6 & 11 & -6 & 1 \\ 0 & 0 & \mu & -1 \end{bmatrix} \] Next, we can focus on the submatrix formed by the first three rows: \[ B = \begin{bmatrix} \mu - 36 & 65 & -36 \\ 0 & \mu & -1 \\ -6 & 11 & -6 \end{bmatrix} \] For \( \rho(A) \) to equal 3, the determinant of this matrix should not equal zero: \[ \det(B) = \begin{vmatrix} \mu - 36 & 65 & -36 \\ 0 & \mu & -1 \\ -6 & 11 & -6 \end{vmatrix} \] Calculating this determinant, we can expand along the first row (the upper triangular form makes it easier): \[ \det(B) = (\mu - 36) \cdot \begin{vmatrix} \mu & -1 \\ 11 & -6 \end{vmatrix} - 65 \cdot \begin{vmatrix} 0 & -1 \\ -6 & -6 \end{vmatrix} - 36 \cdot \begin{vmatrix} 0 & \mu \\ -6 & 11 \end{vmatrix} \] Calculating the 2x2 determinants: 1. \( \begin{vmatrix} \mu & -1 \\ 11 & -6 \end{vmatrix} = \mu(-6) - (-1)(11) = -6\mu + 11 \) 2. \( \begin{vmatrix} 0 & -1 \\ -6 & -6 \end{vmatrix} = 0 \cdot (-6) - (-1)(-6) = -6 \) 3. \( \begin{vmatrix} 0 & \mu \\ -6 & 11 \end{vmatrix} = 0 \cdot 11 - \mu(-6) = 6\mu \) Thus: \[ \det(B) = (\mu - 36)(-6\mu + 11) + 65 \cdot 6 - 36 \cdot 6\mu \] Simplifying: \[ \det(B) = -6\mu^2 + 11\mu + 390 - 216\mu = -6\mu^2 - 205\mu + 390 \] Set \( \det(B) \neq 0 \) to ensure rank 3: Solving \( -6\mu^2 - 205\mu + 390 = 0 \): Use the quadratic formula \( \mu = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \): Here, \( a = -6, b = -205, c = 390 \): \[ \Delta = (-205)^2 - 4(-6)(390) = 42025 + 9360 = 51385 \] Calculating roots: \[ \mu = \frac{205 \pm \sqrt{51385}}{-12} \] Approximately calculate \( \sqrt{51385} \approx 226.