Question
upstudy study bank question image url

Example 12 Three forces \( \mathrm{F}_{1}\left(2 \mathrm{~N}, 060^{\circ}\right), \mathrm{F}_{2}(4.5 \mathrm{~N} \), \( \left.180^{\circ}\right) \) and \( \mathrm{F}_{3}\left(5 \mathrm{~N}, 300^{\circ}\right) \) act on a body of mass 2 kg , initially at rest. Find i) the magnitude and direction of the resultant force. ii) the acceleration with which the body begins to move.

Ask by Bradley Frazier. in Ghana
Feb 03,2025

Real Tutor Solution

Tutor-Verified Answer

Answer

The resultant force is 2.78 N at 249°, and the acceleration is 1.39 m/s².

Solution

Certainly! Let's solve the problem step by step. ### **Given:** - **Forces Acting on the Body:** 1. \( \mathbf{F}_1 = 2\, \text{N} \) at \( 60^\circ \) 2. \( \mathbf{F}_2 = 4.5\, \text{N} \) at \( 180^\circ \) 3. \( \mathbf{F}_3 = 5\, \text{N} \) at \( 300^\circ \) - **Mass of the Body:** \( m = 2\, \text{kg} \) - **Initial State:** The body is at rest. ### **Objective:** 1. **(i)** Determine the **magnitude** and **direction** of the resultant force \( \mathbf{R} \). 2. **(ii)** Calculate the **acceleration** \( a \) of the body when it begins to move. --- ### **Part (i): Finding the Resultant Force \( \mathbf{R} \)** To find the resultant force, we'll break each force into its horizontal (x-axis) and vertical (y-axis) components, sum these components separately, and then determine the magnitude and direction of the resultant vector. #### **1. Breaking Down Each Force into Components:** - **Force \( \mathbf{F}_1 = 2\, \text{N} \) at \( 60^\circ \):** \[ \begin{align*} F_{1x} &= F_1 \cdot \cos(60^\circ) = 2 \cdot 0.5 = 1\, \text{N} \\ F_{1y} &= F_1 \cdot \sin(60^\circ) = 2 \cdot \frac{\sqrt{3}}{2} \approx 1.732\, \text{N} \end{align*} \] - **Force \( \mathbf{F}_2 = 4.5\, \text{N} \) at \( 180^\circ \):** \[ \begin{align*} F_{2x} &= F_2 \cdot \cos(180^\circ) = 4.5 \cdot (-1) = -4.5\, \text{N} \\ F_{2y} &= F_2 \cdot \sin(180^\circ) = 4.5 \cdot 0 = 0\, \text{N} \end{align*} \] - **Force \( \mathbf{F}_3 = 5\, \text{N} \) at \( 300^\circ \):** \[ \begin{align*} F_{3x} &= F_3 \cdot \cos(300^\circ) = 5 \cdot 0.5 = 2.5\, \text{N} \\ F_{3y} &= F_3 \cdot \sin(300^\circ) = 5 \cdot (-\frac{\sqrt{3}}{2}) \approx -4.330\, \text{N} \end{align*} \] #### **2. Summing Up the Components:** - **Total Horizontal Component (\( R_x \)):** \[ R_x = F_{1x} + F_{2x} + F_{3x} = 1\, \text{N} - 4.5\, \text{N} + 2.5\, \text{N} = -1\, \text{N} \] - **Total Vertical Component (\( R_y \)):** \[ R_y = F_{1y} + F_{2y} + F_{3y} \approx 1.732\, \text{N} + 0\, \text{N} - 4.330\, \text{N} \approx -2.598\, \text{N} \] #### **3. Calculating the Magnitude of the Resultant Force (\( |\mathbf{R}| \)):** \[ |\mathbf{R}| = \sqrt{R_x^2 + R_y^2} = \sqrt{(-1)^2 + (-2.598)^2} \approx \sqrt{1 + 6.75} \approx \sqrt{7.75} \approx 2.78\, \text{N} \] #### **4. Determining the Direction of the Resultant Force (\( \theta_R \)):** The direction is given by the angle the resultant makes with the positive x-axis. Since both \( R_x \) and \( R_y \) are negative, the resultant lies in the **third quadrant**. \[ \theta_{\text{reference}} = \arctan\left(\frac{|R_y|}{|R_x|}\right) = \arctan\left(\frac{2.598}{1}\right) \approx 69^\circ \] Therefore, the angle relative to the positive x-axis is: \[ \theta_R = 180^\circ + 69^\circ = 249^\circ \] **\(\boxed{\begin{aligned} \text{i) Resultant force magnitude} &= 2.78\, \text{N} \\ \text{Direction} &= 249^\circ \text{ from the positive x-axis} \end{aligned}}\)** --- ### **Part (ii): Calculating the Acceleration \( a \) of the Body** Once the resultant force is known, we can use Newton's Second Law to find the acceleration. \[ \mathbf{F}_{\text{net}} = m \cdot \mathbf{a} \quad \Rightarrow \quad \mathbf{a} = \frac{\mathbf{F}_{\text{net}}}{m} \] Given: - \( |\mathbf{F}_{\text{net}}| = 2.78\, \text{N} \) - \( m = 2\, \text{kg} \) \[ a = \frac{2.78\, \text{N}}{2\, \text{kg}} = 1.39\, \text{m/s}^2 \] **\(\boxed{\text{ii) Acceleration} = 1.39\, \text{m/s}^2}\)** --- ### **Summary:** 1. **Resultant Force:** - **Magnitude:** \( 2.78\, \text{N} \) - **Direction:** \( 249^\circ \) from the positive x-axis 2. **Acceleration of the Body:** \( 1.39\, \text{m/s}^2 \)

Reviewed and approved by the UpStudy tutoring team

error msg
Explain
Simplify this solution

Mind Expander

To solve this problem, let's break it down step-by-step! **i)** First, we'll convert the forces into their rectangular components. For \( \mathrm{F}_{1}(2 \mathrm{~N}, 060^{\circ}) \): - \( F_{1x} = 2 \cos(60^\circ) = 2 \cdot 0.5 = 1 \, \text{N} \) - \( F_{1y} = 2 \sin(60^\circ) = 2 \cdot \frac{\sqrt{3}}{2} \approx 1.732 \, \text{N} \) For \( \mathrm{F}_{2}(4.5 \mathrm{~N}, 180^{\circ}) \): - \( F_{2x} = 4.5 \cos(180^\circ) = 4.5 \cdot (-1) = -4.5 \, \text{N} \) - \( F_{2y} = 4.5 \sin(180^\circ) = 0 \, \text{N} \) For \( \mathrm{F}_{3}(5 \mathrm{~N}, 300^{\circ}) \): - \( F_{3x} = 5 \cos(300^\circ) = 5 \cdot 0.5 = 2.5 \, \text{N} \) - \( F_{3y} = 5 \sin(300^\circ) = 5 \cdot (-\frac{\sqrt{3}}{2}) \approx -4.33 \, \text{N} \) Now we can find the components of the resultant force: - Resultant \( R_x = F_{1x} + F_{2x} + F_{3x} = 1 - 4.5 + 2.5 = -1 \, \text{N} \) - Resultant \( R_y = F_{1y} + F_{2y} + F_{3y} = 1.732 + 0 - 4.33 \approx -2.60 \, \text{N} \) The magnitude of the resultant force \( R \) can be found using the Pythagorean theorem: \[ R = \sqrt{R_x^2 + R_y^2} = \sqrt{(-1)^2 + (-2.60)^2} \approx \sqrt{1 + 6.76} \approx \sqrt{7.76} \approx 2.78 \, \text{N} \] The direction (angle \( \theta \)) of the resultant force relative to the negative x-axis can be found using the arctangent function: \[ \theta = \tan^{-1}\left(\frac{R_y}{R_x}\right) = \tan^{-1}\left(\frac{-2.60}{-1}\right) \approx \tan^{-1}(2.60) \approx 69.44^\circ \] Since both components are negative, the angle is in the third quadrant: \[ \text{Direction} = 180^\circ + 69.44^\circ \approx 249.44^\circ \] **ii)** Now, to find the acceleration \( a \): Using Newton's second law \( F = ma \), we can calculate: \[ a = \frac{R}{m} = \frac{2.78 \, \text{N}}{2 \, \text{kg}} \approx 1.39 \, \text{m/s}^2 \] In summary: - \( \text{Resultant Force: } R \approx 2.78 \, \text{N}, \text{ Direction: } 249.44^\circ \) - \( \text{Acceleration: } a \approx 1.39 \, \text{m/s}^2 \)

Related Questions

Latest Physics Questions

Try Premium now!
Try Premium and ask Thoth AI unlimited math questions now!
Maybe later Go Premium
Study can be a real struggle
Why not UpStudy it?
Select your plan below
Premium

You can enjoy

Start now
  • Step-by-step explanations
  • 24/7 expert live tutors
  • Unlimited number of questions
  • No interruptions
  • Full access to Answer and Solution
  • Full Access to PDF Chat, UpStudy Chat, Browsing Chat
Basic

Totally free but limited

  • Limited Solution
Welcome to UpStudy!
Please sign in to continue the Thoth AI Chat journey
Continue with Email
Or continue with
By clicking “Sign in”, you agree to our Terms of Use & Privacy Policy