Example 12 Three forces \( \mathrm{F}_{1}\left(2 \mathrm{~N}, 060^{\circ}\right), \mathrm{F}_{2}(4.5 \mathrm{~N} \), \( \left.180^{\circ}\right) \) and \( \mathrm{F}_{3}\left(5 \mathrm{~N}, 300^{\circ}\right) \) act on a body of mass 2 kg , initially at rest. Find i) the magnitude and direction of the resultant force. ii) the acceleration with which the body begins to move.
Real Tutor Solution
Answer
Solution
Reviewed and approved by the UpStudy tutoring team
Mind Expander
To solve this problem, let's break it down step-by-step! **i)** First, we'll convert the forces into their rectangular components. For \( \mathrm{F}_{1}(2 \mathrm{~N}, 060^{\circ}) \): - \( F_{1x} = 2 \cos(60^\circ) = 2 \cdot 0.5 = 1 \, \text{N} \) - \( F_{1y} = 2 \sin(60^\circ) = 2 \cdot \frac{\sqrt{3}}{2} \approx 1.732 \, \text{N} \) For \( \mathrm{F}_{2}(4.5 \mathrm{~N}, 180^{\circ}) \): - \( F_{2x} = 4.5 \cos(180^\circ) = 4.5 \cdot (-1) = -4.5 \, \text{N} \) - \( F_{2y} = 4.5 \sin(180^\circ) = 0 \, \text{N} \) For \( \mathrm{F}_{3}(5 \mathrm{~N}, 300^{\circ}) \): - \( F_{3x} = 5 \cos(300^\circ) = 5 \cdot 0.5 = 2.5 \, \text{N} \) - \( F_{3y} = 5 \sin(300^\circ) = 5 \cdot (-\frac{\sqrt{3}}{2}) \approx -4.33 \, \text{N} \) Now we can find the components of the resultant force: - Resultant \( R_x = F_{1x} + F_{2x} + F_{3x} = 1 - 4.5 + 2.5 = -1 \, \text{N} \) - Resultant \( R_y = F_{1y} + F_{2y} + F_{3y} = 1.732 + 0 - 4.33 \approx -2.60 \, \text{N} \) The magnitude of the resultant force \( R \) can be found using the Pythagorean theorem: \[ R = \sqrt{R_x^2 + R_y^2} = \sqrt{(-1)^2 + (-2.60)^2} \approx \sqrt{1 + 6.76} \approx \sqrt{7.76} \approx 2.78 \, \text{N} \] The direction (angle \( \theta \)) of the resultant force relative to the negative x-axis can be found using the arctangent function: \[ \theta = \tan^{-1}\left(\frac{R_y}{R_x}\right) = \tan^{-1}\left(\frac{-2.60}{-1}\right) \approx \tan^{-1}(2.60) \approx 69.44^\circ \] Since both components are negative, the angle is in the third quadrant: \[ \text{Direction} = 180^\circ + 69.44^\circ \approx 249.44^\circ \] **ii)** Now, to find the acceleration \( a \): Using Newton's second law \( F = ma \), we can calculate: \[ a = \frac{R}{m} = \frac{2.78 \, \text{N}}{2 \, \text{kg}} \approx 1.39 \, \text{m/s}^2 \] In summary: - \( \text{Resultant Force: } R \approx 2.78 \, \text{N}, \text{ Direction: } 249.44^\circ \) - \( \text{Acceleration: } a \approx 1.39 \, \text{m/s}^2 \)