Example 12 Three forces \( \mathrm{F}_{1}\left(2 \mathrm{~N}, 060^{\circ}\right), \mathrm{F}_{2}(4.5 \mathrm{~N} \), \( \left.180^{\circ}\right) \) and \( \mathrm{F}_{3}\left(5 \mathrm{~N}, 300^{\circ}\right) \) act on a body of mass 2 kg , initially at rest. Find i) the magnitude and direction of the resultant force. ii) the acceleration with which the body begins to move.
Solución de tutoría real
Responder
Solución
Revisado y aprobado por el equipo de tutoría de UpStudy
Mind Expander
To solve this problem, let's break it down step-by-step! **i)** First, we'll convert the forces into their rectangular components. For \( \mathrm{F}_{1}(2 \mathrm{~N}, 060^{\circ}) \): - \( F_{1x} = 2 \cos(60^\circ) = 2 \cdot 0.5 = 1 \, \text{N} \) - \( F_{1y} = 2 \sin(60^\circ) = 2 \cdot \frac{\sqrt{3}}{2} \approx 1.732 \, \text{N} \) For \( \mathrm{F}_{2}(4.5 \mathrm{~N}, 180^{\circ}) \): - \( F_{2x} = 4.5 \cos(180^\circ) = 4.5 \cdot (-1) = -4.5 \, \text{N} \) - \( F_{2y} = 4.5 \sin(180^\circ) = 0 \, \text{N} \) For \( \mathrm{F}_{3}(5 \mathrm{~N}, 300^{\circ}) \): - \( F_{3x} = 5 \cos(300^\circ) = 5 \cdot 0.5 = 2.5 \, \text{N} \) - \( F_{3y} = 5 \sin(300^\circ) = 5 \cdot (-\frac{\sqrt{3}}{2}) \approx -4.33 \, \text{N} \) Now we can find the components of the resultant force: - Resultant \( R_x = F_{1x} + F_{2x} + F_{3x} = 1 - 4.5 + 2.5 = -1 \, \text{N} \) - Resultant \( R_y = F_{1y} + F_{2y} + F_{3y} = 1.732 + 0 - 4.33 \approx -2.60 \, \text{N} \) The magnitude of the resultant force \( R \) can be found using the Pythagorean theorem: \[ R = \sqrt{R_x^2 + R_y^2} = \sqrt{(-1)^2 + (-2.60)^2} \approx \sqrt{1 + 6.76} \approx \sqrt{7.76} \approx 2.78 \, \text{N} \] The direction (angle \( \theta \)) of the resultant force relative to the negative x-axis can be found using the arctangent function: \[ \theta = \tan^{-1}\left(\frac{R_y}{R_x}\right) = \tan^{-1}\left(\frac{-2.60}{-1}\right) \approx \tan^{-1}(2.60) \approx 69.44^\circ \] Since both components are negative, the angle is in the third quadrant: \[ \text{Direction} = 180^\circ + 69.44^\circ \approx 249.44^\circ \] **ii)** Now, to find the acceleration \( a \): Using Newton's second law \( F = ma \), we can calculate: \[ a = \frac{R}{m} = \frac{2.78 \, \text{N}}{2 \, \text{kg}} \approx 1.39 \, \text{m/s}^2 \] In summary: - \( \text{Resultant Force: } R \approx 2.78 \, \text{N}, \text{ Direction: } 249.44^\circ \) - \( \text{Acceleration: } a \approx 1.39 \, \text{m/s}^2 \)