Pregunta
upstudy study bank question image url

Example 12 Three forces \( \mathrm{F}_{1}\left(2 \mathrm{~N}, 060^{\circ}\right), \mathrm{F}_{2}(4.5 \mathrm{~N} \), \( \left.180^{\circ}\right) \) and \( \mathrm{F}_{3}\left(5 \mathrm{~N}, 300^{\circ}\right) \) act on a body of mass 2 kg , initially at rest. Find i) the magnitude and direction of the resultant force. ii) the acceleration with which the body begins to move.

Ask by Bradley Frazier. in Ghana
Feb 03,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

The resultant force is 2.78 N at 249°, and the acceleration is 1.39 m/s².

Solución

Certainly! Let's solve the problem step by step. ### **Given:** - **Forces Acting on the Body:** 1. \( \mathbf{F}_1 = 2\, \text{N} \) at \( 60^\circ \) 2. \( \mathbf{F}_2 = 4.5\, \text{N} \) at \( 180^\circ \) 3. \( \mathbf{F}_3 = 5\, \text{N} \) at \( 300^\circ \) - **Mass of the Body:** \( m = 2\, \text{kg} \) - **Initial State:** The body is at rest. ### **Objective:** 1. **(i)** Determine the **magnitude** and **direction** of the resultant force \( \mathbf{R} \). 2. **(ii)** Calculate the **acceleration** \( a \) of the body when it begins to move. --- ### **Part (i): Finding the Resultant Force \( \mathbf{R} \)** To find the resultant force, we'll break each force into its horizontal (x-axis) and vertical (y-axis) components, sum these components separately, and then determine the magnitude and direction of the resultant vector. #### **1. Breaking Down Each Force into Components:** - **Force \( \mathbf{F}_1 = 2\, \text{N} \) at \( 60^\circ \):** \[ \begin{align*} F_{1x} &= F_1 \cdot \cos(60^\circ) = 2 \cdot 0.5 = 1\, \text{N} \\ F_{1y} &= F_1 \cdot \sin(60^\circ) = 2 \cdot \frac{\sqrt{3}}{2} \approx 1.732\, \text{N} \end{align*} \] - **Force \( \mathbf{F}_2 = 4.5\, \text{N} \) at \( 180^\circ \):** \[ \begin{align*} F_{2x} &= F_2 \cdot \cos(180^\circ) = 4.5 \cdot (-1) = -4.5\, \text{N} \\ F_{2y} &= F_2 \cdot \sin(180^\circ) = 4.5 \cdot 0 = 0\, \text{N} \end{align*} \] - **Force \( \mathbf{F}_3 = 5\, \text{N} \) at \( 300^\circ \):** \[ \begin{align*} F_{3x} &= F_3 \cdot \cos(300^\circ) = 5 \cdot 0.5 = 2.5\, \text{N} \\ F_{3y} &= F_3 \cdot \sin(300^\circ) = 5 \cdot (-\frac{\sqrt{3}}{2}) \approx -4.330\, \text{N} \end{align*} \] #### **2. Summing Up the Components:** - **Total Horizontal Component (\( R_x \)):** \[ R_x = F_{1x} + F_{2x} + F_{3x} = 1\, \text{N} - 4.5\, \text{N} + 2.5\, \text{N} = -1\, \text{N} \] - **Total Vertical Component (\( R_y \)):** \[ R_y = F_{1y} + F_{2y} + F_{3y} \approx 1.732\, \text{N} + 0\, \text{N} - 4.330\, \text{N} \approx -2.598\, \text{N} \] #### **3. Calculating the Magnitude of the Resultant Force (\( |\mathbf{R}| \)):** \[ |\mathbf{R}| = \sqrt{R_x^2 + R_y^2} = \sqrt{(-1)^2 + (-2.598)^2} \approx \sqrt{1 + 6.75} \approx \sqrt{7.75} \approx 2.78\, \text{N} \] #### **4. Determining the Direction of the Resultant Force (\( \theta_R \)):** The direction is given by the angle the resultant makes with the positive x-axis. Since both \( R_x \) and \( R_y \) are negative, the resultant lies in the **third quadrant**. \[ \theta_{\text{reference}} = \arctan\left(\frac{|R_y|}{|R_x|}\right) = \arctan\left(\frac{2.598}{1}\right) \approx 69^\circ \] Therefore, the angle relative to the positive x-axis is: \[ \theta_R = 180^\circ + 69^\circ = 249^\circ \] **\(\boxed{\begin{aligned} \text{i) Resultant force magnitude} &= 2.78\, \text{N} \\ \text{Direction} &= 249^\circ \text{ from the positive x-axis} \end{aligned}}\)** --- ### **Part (ii): Calculating the Acceleration \( a \) of the Body** Once the resultant force is known, we can use Newton's Second Law to find the acceleration. \[ \mathbf{F}_{\text{net}} = m \cdot \mathbf{a} \quad \Rightarrow \quad \mathbf{a} = \frac{\mathbf{F}_{\text{net}}}{m} \] Given: - \( |\mathbf{F}_{\text{net}}| = 2.78\, \text{N} \) - \( m = 2\, \text{kg} \) \[ a = \frac{2.78\, \text{N}}{2\, \text{kg}} = 1.39\, \text{m/s}^2 \] **\(\boxed{\text{ii) Acceleration} = 1.39\, \text{m/s}^2}\)** --- ### **Summary:** 1. **Resultant Force:** - **Magnitude:** \( 2.78\, \text{N} \) - **Direction:** \( 249^\circ \) from the positive x-axis 2. **Acceleration of the Body:** \( 1.39\, \text{m/s}^2 \)

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Mind Expander

To solve this problem, let's break it down step-by-step! **i)** First, we'll convert the forces into their rectangular components. For \( \mathrm{F}_{1}(2 \mathrm{~N}, 060^{\circ}) \): - \( F_{1x} = 2 \cos(60^\circ) = 2 \cdot 0.5 = 1 \, \text{N} \) - \( F_{1y} = 2 \sin(60^\circ) = 2 \cdot \frac{\sqrt{3}}{2} \approx 1.732 \, \text{N} \) For \( \mathrm{F}_{2}(4.5 \mathrm{~N}, 180^{\circ}) \): - \( F_{2x} = 4.5 \cos(180^\circ) = 4.5 \cdot (-1) = -4.5 \, \text{N} \) - \( F_{2y} = 4.5 \sin(180^\circ) = 0 \, \text{N} \) For \( \mathrm{F}_{3}(5 \mathrm{~N}, 300^{\circ}) \): - \( F_{3x} = 5 \cos(300^\circ) = 5 \cdot 0.5 = 2.5 \, \text{N} \) - \( F_{3y} = 5 \sin(300^\circ) = 5 \cdot (-\frac{\sqrt{3}}{2}) \approx -4.33 \, \text{N} \) Now we can find the components of the resultant force: - Resultant \( R_x = F_{1x} + F_{2x} + F_{3x} = 1 - 4.5 + 2.5 = -1 \, \text{N} \) - Resultant \( R_y = F_{1y} + F_{2y} + F_{3y} = 1.732 + 0 - 4.33 \approx -2.60 \, \text{N} \) The magnitude of the resultant force \( R \) can be found using the Pythagorean theorem: \[ R = \sqrt{R_x^2 + R_y^2} = \sqrt{(-1)^2 + (-2.60)^2} \approx \sqrt{1 + 6.76} \approx \sqrt{7.76} \approx 2.78 \, \text{N} \] The direction (angle \( \theta \)) of the resultant force relative to the negative x-axis can be found using the arctangent function: \[ \theta = \tan^{-1}\left(\frac{R_y}{R_x}\right) = \tan^{-1}\left(\frac{-2.60}{-1}\right) \approx \tan^{-1}(2.60) \approx 69.44^\circ \] Since both components are negative, the angle is in the third quadrant: \[ \text{Direction} = 180^\circ + 69.44^\circ \approx 249.44^\circ \] **ii)** Now, to find the acceleration \( a \): Using Newton's second law \( F = ma \), we can calculate: \[ a = \frac{R}{m} = \frac{2.78 \, \text{N}}{2 \, \text{kg}} \approx 1.39 \, \text{m/s}^2 \] In summary: - \( \text{Resultant Force: } R \approx 2.78 \, \text{N}, \text{ Direction: } 249.44^\circ \) - \( \text{Acceleration: } a \approx 1.39 \, \text{m/s}^2 \)

preguntas relacionadas

Latest Physics Questions

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad