Question
upstudy study bank question image url

(5) \( \int x e^{-2 x} d x \)

Ask by Horton Rojas. in India
Jan 24,2025

Real Tutor Solution

Tutor-Verified Answer

Answer

The integral of \( x e^{-2x} \) with respect to \( x \) is \( -\frac{x}{2e^{2x}} - \frac{1}{4e^{2x}} + C \).

Solution

Calculate the integral \( \int x e^{-2x} dx \). Evaluate the integral by following steps: - step0: Evaluate using partial integration formula: \(\int xe^{-2x} dx\) - step1: Prepare for integration by parts: \(\begin{align}&u=x\\&dv=e^{-2x}dx\end{align}\) - step2: Calculate the derivative: \(\begin{align}&du=dx\\&dv=e^{-2x}dx\end{align}\) - step3: Evaluate the integral: \(\begin{align}&du=dx\\&v=-\frac{1}{2e^{2x}}\end{align}\) - step4: Substitute the values into formula: \(x\left(-\frac{1}{2e^{2x}}\right)-\int 1\times \left(-\frac{1}{2e^{2x}}\right) dx\) - step5: Calculate: \(-\frac{x}{2e^{2x}}-\int -\frac{1}{2e^{2x}} dx\) - step6: Use properties of integrals: \(-\frac{x}{2e^{2x}}+\int \frac{1}{2e^{2x}} dx\) - step7: Evaluate the integral: \(-\frac{x}{2e^{2x}}-\frac{1}{4e^{2x}}\) - step8: Add the constant of integral C: \(-\frac{x}{2e^{2x}}-\frac{1}{4e^{2x}} + C, C \in \mathbb{R}\) The integral of \(x e^{-2x}\) with respect to \(x\) is given by: \[ \int x e^{-2x} dx = -\frac{x}{2e^{2x}} - \frac{1}{4e^{2x}} + C \] where \(C\) is the constant of integration.

Reviewed and approved by the UpStudy tutoring team

error msg
Explain
Simplify this solution

Mind Expander

To solve the integral \( \int x e^{-2 x} d x \), we can use integration by parts. Let's set \( u = x \) (then \( du = dx \)) and \( dv = e^{-2x} dx \) (which gives us \( v = -\frac{1}{2} e^{-2x} \)). Applying integration by parts, we have: \[ \int x e^{-2 x} d x = uv - \int v du \] Substituting our values in, we get: \[ = -\frac{1}{2} x e^{-2x} - \int -\frac{1}{2} e^{-2x} dx \] Now, solving the remaining integral: \[ = -\frac{1}{2} x e^{-2x} + \frac{1}{4} e^{-2x} + C \] Thus, the final result is: \[ \int x e^{-2 x} d x = -\frac{1}{2} x e^{-2x} + \frac{1}{4} e^{-2x} + C \]

Try Premium now!
Try Premium and ask Thoth AI unlimited math questions now!
Maybe later Go Premium
Study can be a real struggle
Why not UpStudy it?
Select your plan below
Premium

You can enjoy

Start now
  • Step-by-step explanations
  • 24/7 expert live tutors
  • Unlimited number of questions
  • No interruptions
  • Full access to Answer and Solution
  • Full Access to PDF Chat, UpStudy Chat, Browsing Chat
Basic

Totally free but limited

  • Limited Solution
Welcome to UpStudy!
Please sign in to continue the Thoth AI Chat journey
Continue with Email
Or continue with
By clicking “Sign in”, you agree to our Terms of Use & Privacy Policy