(5) \( \int x e^{-2 x} d x \)
Solución de tutoría real
Responder
Solución
Revisado y aprobado por el equipo de tutoría de UpStudy
Mind Expander
To solve the integral \( \int x e^{-2 x} d x \), we can use integration by parts. Let's set \( u = x \) (then \( du = dx \)) and \( dv = e^{-2x} dx \) (which gives us \( v = -\frac{1}{2} e^{-2x} \)). Applying integration by parts, we have: \[ \int x e^{-2 x} d x = uv - \int v du \] Substituting our values in, we get: \[ = -\frac{1}{2} x e^{-2x} - \int -\frac{1}{2} e^{-2x} dx \] Now, solving the remaining integral: \[ = -\frac{1}{2} x e^{-2x} + \frac{1}{4} e^{-2x} + C \] Thus, the final result is: \[ \int x e^{-2 x} d x = -\frac{1}{2} x e^{-2x} + \frac{1}{4} e^{-2x} + C \]