Question
upstudy study bank question image url

A function is said to have a horizontal asymptote if either the limit at infinity exists or the limit at negative infinity exists. Show that each of the following functions has a horizontal asymptote by calculating the given limit. \( \lim _{x \rightarrow \infty} \frac{-7 x}{11+2 x}=\square \) \( \lim _{x \rightarrow-\infty} \frac{4 x-6}{x^{3}+3 x-2}=\square \) \( \lim _{x \rightarrow \infty} \frac{x^{2}-7 x-10}{13-12 x^{2}}=\square \)

Ask by Flynn Chambers. in the United States
Jan 29,2025

Real Tutor Solution

Tutor-Verified Answer

Answer

Each function has a horizontal asymptote as follows: 1. \( \lim_{x \rightarrow \infty} \frac{-7x}{11 + 2x} = -\frac{7}{2} \) 2. \( \lim_{x \rightarrow -\infty} \frac{4x - 6}{x^3 + 3x - 2} = 0 \) 3. \( \lim_{x \rightarrow \infty} \frac{x^2 - 7x - 10}{13 - 12x^2} = -\frac{1}{12} \)

Solution

To determine whether each function has a horizontal asymptote, we'll evaluate the given limits. A function has a horizontal asymptote if the limit of the function as \( x \) approaches \( \infty \) or \( -\infty \) exists. ### 1. \( \lim_{x \rightarrow \infty} \frac{-7x}{11 + 2x} \) **Step-by-Step Solution:** 1. **Identify the leading terms:** In the numerator, the leading term is \( -7x \). In the denominator, the leading term is \( 2x \). 2. **Divide the leading coefficients:** \[ \lim_{x \rightarrow \infty} \frac{-7x}{2x} = \frac{-7}{2} \] **Final Answer:** \[ \lim_{x \rightarrow \infty} \frac{-7x}{11 + 2x} = -\frac{7}{2} \] --- ### 2. \( \lim_{x \rightarrow -\infty} \frac{4x - 6}{x^3 + 3x - 2} \) **Step-by-Step Solution:** 1. **Determine the degrees of the polynomials:** - Numerator: Degree 1 - Denominator: Degree 3 2. **Compare the degrees:** Since the degree of the denominator is higher than that of the numerator, the limit will approach 0 as \( x \) approaches \( -\infty \). **Final Answer:** \[ \lim_{x \rightarrow -\infty} \frac{4x - 6}{x^3 + 3x - 2} = 0 \] --- ### 3. \( \lim_{x \rightarrow \infty} \frac{x^2 - 7x - 10}{13 - 12x^2} \) **Step-by-Step Solution:** 1. **Identify the leading terms:** In the numerator, the leading term is \( x^2 \). In the denominator, the leading term is \( -12x^2 \). 2. **Divide the leading coefficients:** \[ \lim_{x \rightarrow \infty} \frac{x^2}{-12x^2} = \frac{1}{-12} = -\frac{1}{12} \] **Final Answer:** \[ \lim_{x \rightarrow \infty} \frac{x^2 - 7x - 10}{13 - 12x^2} = -\frac{1}{12} \] --- ### **Summary of Horizontal Asymptotes:** 1. \( \lim_{x \rightarrow \infty} \frac{-7x}{11 + 2x} = -\frac{7}{2} \) 2. \( \lim_{x \rightarrow -\infty} \frac{4x - 6}{x^3 + 3x - 2} = 0 \) 3. \( \lim_{x \rightarrow \infty} \frac{x^2 - 7x - 10}{13 - 12x^2} = -\frac{1}{12} \) Each of these limits confirms the existence of a horizontal asymptote for the respective function.

Reviewed and approved by the UpStudy tutoring team

error msg
Explain
Simplify this solution

The Deep Dive

To find the horizontal asymptotes of the given functions, we will compute the limits as specified. 1. For \( \lim _{x \rightarrow \infty} \frac{-7 x}{11 + 2 x} \): \[ \lim_{x \to \infty} \frac{-7x}{11 + 2x} = \lim_{x \to \infty} \frac{-7}{\frac{11}{x} + 2} = \frac{-7}{0 + 2} = -\frac{7}{2}. \] 2. For \( \lim _{x \rightarrow -\infty} \frac{4 x-6}{x^{3}+3 x-2} \): \[ \lim_{x \to -\infty} \frac{4x - 6}{x^3 + 3x - 2} = \lim_{x \to -\infty} \frac{4 - \frac{6}{x}}{x^2 + \frac{3}{x} - \frac{2}{x^2}} = \frac{4}{-\infty} = 0. \] 3. For \( \lim _{x \rightarrow \infty} \frac{x^{2}-7 x-10}{13-12 x^{2}} \): \[ \lim_{x \to \infty} \frac{x^2 - 7x - 10}{13 - 12x^2} = \lim_{x \to \infty} \frac{1 - \frac{7}{x} - \frac{10}{x^2}}{\frac{13}{x^2} - 12} = \frac{1 - 0 - 0}{0 - 12} = -\frac{1}{12}. \] Putting it all together, we have: \[ \lim _{x \rightarrow \infty} \frac{-7 x}{11 + 2 x} = -\frac{7}{2}, \quad \lim _{x \rightarrow -\infty} \frac{4 x - 6}{x^{3} + 3 x - 2} = 0, \quad \lim _{x \rightarrow \infty} \frac{x^{2} - 7 x - 10}{13 - 12 x^{2}} = -\frac{1}{12}. \]

Related Questions

Latest Calculus Questions

Try Premium now!
Try Premium and ask Thoth AI unlimited math questions now!
Maybe later Go Premium
Study can be a real struggle
Why not UpStudy it?
Select your plan below
Premium

You can enjoy

Start now
  • Step-by-step explanations
  • 24/7 expert live tutors
  • Unlimited number of questions
  • No interruptions
  • Full access to Answer and Solution
  • Full Access to PDF Chat, UpStudy Chat, Browsing Chat
Basic

Totally free but limited

  • Limited Solution
Welcome to UpStudy!
Please sign in to continue the Thoth AI Chat journey
Continue with Email
Or continue with
By clicking “Sign in”, you agree to our Terms of Use & Privacy Policy