Question
24. \( \left(9 r^{2}+4 r-7\right)+\left(3 r^{2}-3 r\right) \)
Ask by Grant Sullivan. in the United States
Jan 23,2025
Real Tutor Solution
Tutor-Verified Answer
Answer
The simplified expression is \(12r^{2} + r - 7\).
Solution
To simplify the expression:
\[
\left(9 r^{2} + 4 r - 7\right) + \left(3 r^{2} - 3 r\right)
\]
**Step 1: Remove the Parentheses**
Since both parentheses are preceded by a plus sign, you can remove them directly:
\[
9 r^{2} + 4 r - 7 + 3 r^{2} - 3 r
\]
**Step 2: Combine Like Terms**
- **Combine \( r^{2} \) terms:**
\[
9 r^{2} + 3 r^{2} = 12 r^{2}
\]
- **Combine \( r \) terms:**
\[
4 r - 3 r = 1 r \quad \text{or simply} \quad r
\]
- **Constant term:**
\[
-7
\]
**Step 3: Write the Simplified Expression**
\[
12 r^{2} + r - 7
\]
**Final Answer:**
\[
12 r^{2} + r - 7
\]
Reviewed and approved by the UpStudy tutoring team
Like
error msg
Explain
Simplify this solution
Bonus Knowledge
To simplify the expression \( \left(9 r^{2}+4 r-7\right)+\left(3 r^{2}-3 r\right) \), start by combining like terms. First, group the \( r^2 \), \( r \), and constant terms together: - \( 9r^2 + 3r^2 = 12r^2 \) (combining the \( r^2 \) terms), - \( 4r - 3r = 1r \) (combining the \( r \) terms), - \( -7 \) (the constant term remains the same). Putting it all together, the simplified expression is: \[ 12r^2 + r - 7 \]