Application \( \begin{array}{lll}\text { Ecrire la forme canonique de } f(x) \text { dans chacun des cas suivants : } \\ \begin{array}{lll}\text { a) } f(x)=2 x+x^{2} & \text {;b) } f(x)=x^{2}-5 x+1 \text {;c) } f(x)=-x^{2}+x-2 \\ \text { d) } f(x)=2 x^{2}+\frac{3}{4} x+5 ; \text {;) } f(x)=(3 x-2)(x+3) ; & \text { f) } f(x)=-2 x^{2}-5 x+3 \\ \text { g) } f(x)=x^{2}+\sqrt{2} x+1 ; & \text { h) } f(x)=-\frac{1}{2} x^{2}+4 x ; & \text { i) } f(x)=x-2 x^{2} \\ \text { j) } f(x)=x(3 x-2)-2 ; & \text { k) } f(x)=\frac{1}{4} x^{2}-x-8 ; & \text { 1) } f(x)=-2 \sqrt{3} x^{2}-\sqrt{6} x\end{array}\end{array} \)
Real Tutor Solution
Answer
Solution
Sign in to Unlock Answers for Free!
A Learning Platform Trusted by Millions of Real Students and Teachers.
Reviewed and approved by the UpStudy tutoring team
Mind Expander
Pour la forme canonique, nous allons compléter le carré pour chaque fonction. a) \( f(x) = 2x + x^2 = (x + 1)^2 + 1 \) b) \( f(x) = x^2 - 5x + 1 = (x - \frac{5}{2})^2 - \frac{21}{4} \) c) \( f(x) = -x^2 + x - 2 = -\left(x - \frac{1}{2}\right)^2 - \frac{7}{4} \) d) \( f(x) = 2x^2 + \frac{3}{4}x + 5 = 2\left(x + \frac{3}{16}\right)^2 - \frac{71}{128} \) e) \( f(x) = (3x - 2)(x + 3) = 3(x - \frac{2}{3})(x + 3) - 6\) f) \( f(x) = -2x^2 - 5x + 3 = -2\left(x + \frac{5}{4}\right)^2 + \frac{41}{8} \) g) \( f(x) = x^2 + \sqrt{2}x + 1 = \left(x + \frac{\sqrt{2}}{2}\right)^2 + \left(1 - \frac{1}{2}\right) \) h) \( f(x) = -\frac{1}{2}x^2 + 4x = -\frac{1}{2}\left(x - 8\right)^2 + 32 \) i) \( f(x) = x - 2x^2 = -2\left(x - \frac{1}{4}\right)^2 + \frac{1}{8} \) j) \( f(x) = x(3x - 2) - 2 = 3\left(x - \frac{1}{3}\right)^2 - \frac{11}{3} \) k) \( f(x) = \frac{1}{4}x^2 - x - 8 = \frac{1}{4}\left(x + 4\right)^2 - 16 \) l) \( f(x) = -2\sqrt{3}x^2 - \sqrt{6}x = -2\sqrt{3}\left(x + \frac{\sqrt{6}}{4\sqrt{3}}\right)^2 + \frac{3}{8} \) Amusez-vous à retrouver les transformations !