Question
upstudy study bank question image url

Given that \( \cos (A+B)+\cos (A-B)=2 \cos A \cos B \). a) Prove the above identity. b) Hence, determine the value of \( \cos 80^{\circ}+\cos 40^{\circ} \) if \( \cos 20^{\circ}=0,94 \)

Ask by Haynes Franklin. in South Africa
Feb 03,2025

Real Tutor Solution

Tutor-Verified Answer

Answer

The value of \( \cos 80^\circ + \cos 40^\circ \) is 0.94.

Solution

### Problem b) We are to determine the value of \( \cos 80^{\circ} + \cos 40^{\circ} \) given that \( \cos 20^{\circ} = 0.94 \). Using the identity proved in part (a): \[ \cos(A+B) + \cos(A-B) = 2 \cos A \cos B \] Let’s choose: \[ A = 60^{\circ}, \quad B = 20^{\circ} \] Then: \[ \cos(60^{\circ} + 20^{\circ}) + \cos(60^{\circ} - 20^{\circ}) = 2 \cos 60^{\circ} \cos 20^{\circ} \] Simplifying the left side: \[ \cos 80^{\circ} + \cos 40^{\circ} = 2 \cos 60^{\circ} \cos 20^{\circ} \] We know that: \[ \cos 60^{\circ} = 0.5 \] Substituting the known values: \[ \cos 80^{\circ} + \cos 40^{\circ} = 2 \times 0.5 \times 0.94 = 0.94 \] ### Final Answer Problem b Answer: The value of \( \cos 80^\circ + \cos 40^\circ \) is 0.94.

Reviewed and approved by the UpStudy tutoring team

error msg
Explain
Simplify this solution

Mind Expander

To prove the identity \( \cos (A+B) + \cos (A-B) = 2 \cos A \cos B \), we can use the cosine addition and subtraction formulas: 1. Start by applying the cosine addition formula: \[ \cos (A+B) = \cos A \cos B - \sin A \sin B \] 2. Now apply the cosine subtraction formula: \[ \cos (A-B) = \cos A \cos B + \sin A \sin B \] 3. Add these two results: \[ \cos (A+B) + \cos (A-B) = (\cos A \cos B - \sin A \sin B) + (\cos A \cos B + \sin A \sin B) \] 4. Simplifying this gives: \[ \cos (A+B) + \cos (A-B) = 2 \cos A \cos B \] Thus, the identity is proven. **Now to determine \( \cos 80^{\circ} + \cos 40^{\circ} \)**: Using the identity we've just proven, we set \( A = 60^{\circ} \) and \( B = 20^{\circ} \): \[ \cos(60^{\circ} + 20^{\circ}) + \cos(60^{\circ} - 20^{\circ}) = 2 \cos 60^{\circ} \cos 20^{\circ} \] \[ \cos(80^{\circ}) + \cos(40^{\circ}) = 2 \cdot \frac{1}{2} \cdot \cos 20^{\circ} = \cos 20^{\circ} \] Given that \( \cos 20^{\circ} = 0.94 \): \[ \cos 80^{\circ} + \cos 40^{\circ} = 0.94 \] So, the value of \( \cos 80^{\circ} + \cos 40^{\circ} \) is \( 0.94 \).

Try Premium now!
Try Premium and ask Thoth AI unlimited math questions now!
Maybe later Go Premium
Study can be a real struggle
Why not UpStudy it?
Select your plan below
Premium

You can enjoy

Start now
  • Step-by-step explanations
  • 24/7 expert live tutors
  • Unlimited number of questions
  • No interruptions
  • Full access to Answer and Solution
  • Full Access to PDF Chat, UpStudy Chat, Browsing Chat
Basic

Totally free but limited

  • Limited Solution
Welcome to UpStudy!
Please sign in to continue the Thoth AI Chat journey
Continue with Email
Or continue with
By clicking “Sign in”, you agree to our Terms of Use & Privacy Policy