Question
upstudy study bank question image url

Find the direction angles of the vector. (Round your answers to three decimal places.) \[ \mathbf{u}=-2 \mathbf{i}+7 \mathbf{j}+5 \mathbf{k} \] \( \alpha=\square \mathrm{rad} \) \( \beta=\square \mathrm{rad} \) \( \gamma=\square \mathrm{rad} \)

Ask by Long Alexander. in the United States
Jan 25,2025

Real Tutor Solution

Tutor-Verified Answer

Answer

The direction angles are: - \( \alpha = 1.801 \) radians - \( \beta = 0.657 \) radians - \( \gamma = 0.968 \) radians

Solution

To find the direction angles \( \alpha \), \( \beta \), and \( \gamma \) of the vector \( \mathbf{u} = -2 \mathbf{i} + 7 \mathbf{j} + 5 \mathbf{k} \), follow these steps: ### Step 1: Compute the Magnitude of the Vector The magnitude \( |\mathbf{u}| \) is given by: \[ |\mathbf{u}| = \sqrt{(-2)^2 + 7^2 + 5^2} = \sqrt{4 + 49 + 25} = \sqrt{78} \approx 8.832 \] ### Step 2: Calculate the Direction Angles The direction angles are the angles between the vector \( \mathbf{u} \) and the positive \( x \)-, \( y \)-, and \( z \)-axes. They can be found using the following formulas: \[ \alpha = \arccos\left(\frac{u_x}{|\mathbf{u}|}\right), \quad \beta = \arccos\left(\frac{u_y}{|\mathbf{u}|}\right), \quad \gamma = \arccos\left(\frac{u_z}{|\mathbf{u}|}\right) \] Substituting the components of \( \mathbf{u} \): 1. **For \( \alpha \):** \[ \cos \alpha = \frac{-2}{8.832} \approx -0.226 \] \[ \alpha \approx \arccos(-0.226) \approx 1.801 \text{ radians} \] 2. **For \( \beta \):** \[ \cos \beta = \frac{7}{8.832} \approx 0.793 \] \[ \beta \approx \arccos(0.793) \approx 0.657 \text{ radians} \] 3. **For \( \gamma \):** \[ \cos \gamma = \frac{5}{8.832} \approx 0.566 \] \[ \gamma \approx \arccos(0.566) \approx 0.968 \text{ radians} \] ### Final Answer \[ \boxed{ \begin{aligned} \alpha &= 1.801 \ \text{rad} \\ \beta &= 0.657 \ \text{rad} \\ \gamma &= 0.968 \ \text{rad} \end{aligned} } \]

Reviewed and approved by the UpStudy tutoring team

error msg
Explain
Simplify this solution

The Deep Dive

To find the direction angles \(\alpha\), \(\beta\), and \(\gamma\) for the vector \(\mathbf{u} = -2\mathbf{i} + 7\mathbf{j} + 5\mathbf{k}\), we can use the following formulas: 1. Calculate the magnitude of the vector: \[ |\mathbf{u}| = \sqrt{(-2)^2 + 7^2 + 5^2} = \sqrt{4 + 49 + 25} = \sqrt{78} \approx 8.837 \] 2. Use the formulas for direction angles: \[ \alpha = \cos^{-1}\left(\frac{u_x}{|\mathbf{u}|}\right), \quad \beta = \cos^{-1}\left(\frac{u_y}{|\mathbf{u}|}\right), \quad \gamma = \cos^{-1}\left(\frac{u_z}{|\mathbf{u}|}\right) \] 3. Calculate the angles: \[ \alpha = \cos^{-1}\left(\frac{-2}{\sqrt{78}}\right) \approx 2.601 \text{ rad} \] \[ \beta = \cos^{-1}\left(\frac{7}{\sqrt{78}}\right) \approx 0.404 \text{ rad} \] \[ \gamma = \cos^{-1}\left(\frac{5}{\sqrt{78}}\right) \approx 0.850 \text{ rad} \] So rounding to three decimal places, we have: \(\alpha \approx 2.601 \text{ rad}\), \(\beta \approx 0.404 \text{ rad}\), \(\gamma \approx 0.850 \text{ rad}\).

Latest Pre Calculus Questions

Try Premium now!
Try Premium and ask Thoth AI unlimited math questions now!
Maybe later Go Premium
Study can be a real struggle
Why not UpStudy it?
Select your plan below
Premium

You can enjoy

Start now
  • Step-by-step explanations
  • 24/7 expert live tutors
  • Unlimited number of questions
  • No interruptions
  • Full access to Answer and Solution
  • Full Access to PDF Chat, UpStudy Chat, Browsing Chat
Basic

Totally free but limited

  • Limited Solution
Welcome to UpStudy!
Please sign in to continue the Thoth AI Chat journey
Continue with Email
Or continue with
By clicking “Sign in”, you agree to our Terms of Use & Privacy Policy