Question
upstudy study bank question image url

9. At the Holiday Valley Ski Resort, skis cost \( \$ 16 \) to rent and snowboards cost \( \$ 19 \). If 28 people rented on a certain day and the resort brought in \( \$ 478 \), how many skis and snowboards were rented?

Ask by Daniel Patel. in the United States
Jan 23,2025

Real Tutor Solution

Tutor-Verified Answer

Answer

18 skis and 10 snowboards were rented.

Solution

To determine how many skis and snowboards were rented at Holiday Valley Ski Resort, let's set up a system of equations based on the information provided. Let: - \( s \) = number of skis rented - \( b \) = number of snowboards rented We have two pieces of information: 1. The total number of rentals is 28: \[ s + b = 28 \] 2. The total revenue from rentals is \$478: \[ 16s + 19b = 478 \] **Step 1: Solve the first equation for one variable.** Let's solve for \( s \): \[ s = 28 - b \] **Step 2: Substitute \( s \) into the second equation.** \[ 16(28 - b) + 19b = 478 \] \[ 448 - 16b + 19b = 478 \] \[ 448 + 3b = 478 \] **Step 3: Solve for \( b \).** \[ 3b = 478 - 448 \] \[ 3b = 30 \] \[ b = 10 \] **Step 4: Find \( s \) using the value of \( b \).** \[ s = 28 - 10 = 18 \] **Conclusion:** - **Skis rented:** 18 - **Snowboards rented:** 10 **Answer:** 18 skis and 10 snowboards were rented.

Reviewed and approved by the UpStudy tutoring team

error msg
Explain
Simplify this solution

Beyond the Answer

To solve this, let's define two variables: let \( x \) be the number of skis rented and \( y \) be the number of snowboards rented. We can set up the following system of equations based on the information given: 1. \( x + y = 28 \) (total number of rentals) 2. \( 16x + 19y = 478 \) (total revenue) Now, using the first equation, express \( y \) in terms of \( x \): \( y = 28 - x \) Substitute this into the second equation: \( 16x + 19(28 - x) = 478 \) Now, simplify and solve for \( x \): \( 16x + 532 - 19x = 478 \) Combine like terms: \( -3x + 532 = 478 \) Subtract 532 from both sides: \( -3x = -54 \) Now, divide by -3: \( x = 18 \) Now, substitute \( x \) back into the first equation to find \( y \): \( y = 28 - 18 = 10 \) Thus, 18 skis and 10 snowboards were rented. To summarize, the solution is: 18 skis and 10 snowboards were rented.

Try Premium now!
Try Premium and ask Thoth AI unlimited math questions now!
Maybe later Go Premium
Study can be a real struggle
Why not UpStudy it?
Select your plan below
Premium

You can enjoy

Start now
  • Step-by-step explanations
  • 24/7 expert live tutors
  • Unlimited number of questions
  • No interruptions
  • Full access to Answer and Solution
  • Full Access to PDF Chat, UpStudy Chat, Browsing Chat
Basic

Totally free but limited

  • Limited Solution
Welcome to UpStudy!
Please sign in to continue the Thoth AI Chat journey
Continue with Email
Or continue with
By clicking “Sign in”, you agree to our Terms of Use & Privacy Policy