Question
upstudy study bank question image url

\( (y+1) \cdot\left(y^{2}+x^{2}\right)=k \cdot y^{2} \) - Despeje \( k, k=\square \) - Derive la expresión anterior, \( 0=\square \) - Determine la ecuación diferencial, \( \frac{d y}{d x}=\square \)

Ask by Simmons Beck. in Colombia
Dec 06,2024

Real Tutor Solution

Tutor-Verified Answer

Answer

1. \( k = \frac{(y+1)(y^2 + x^2)}{y^2} \) 2. \( 0 = k \cdot 2y \frac{dy}{dx} - (y^2 + x^2) \frac{dy}{dx} - 2x(y+1) \) 3. \( \frac{dy}{dx} = \frac{2x(y+1)}{k \cdot 2y - (y^2 + x^2)} \)

Solution

Sign in to Unlock Answers for Free!

A Learning Platform Trusted by Millions of Real Students and Teachers.

star-icon Unlock

Reviewed and approved by the UpStudy tutoring team

Beyond the Answer

Para despejar \( k \), comenzamos por reorganizar la ecuación original. Primero, multiplicamos \( (y+1) \) por \( (y^2 + x^2) \): \[ k = \frac{(y+1)(y^2 + x^2)}{y^2} \] Esto se puede simplificar como: \[ k = \frac{(y^3 + y^2 + xy^2 + x^2)}{y^2} = y + 1 + \frac{x^2}{y^2} \] Ahora vamos a derivar la expresión original. Usando la regla del producto y la regla de la cadena, aplicamos la derivada a \( (y+1)(y^2 + x^2) \): \[ 0 = \frac{d}{dx}[(y+1)(y^2+x^2)] - \frac{d}{dx}[k \cdot y^2] \] Resultando en: \[ 0 = (y^2+x^2)\frac{dy}{dx} + 2y(y+1)\frac{dy}{dx} + 2x - k \cdot 2y\frac{dy}{dx} \] Finalmente, reorganizamos esta ecuación para determinar la ecuación diferencial: \[ \left((y^2 + x^2) + 2y(y + 1) - 2ky\right)\frac{dy}{dx} = -2x \] Despejando \( \frac{dy}{dx} \): \[ \frac{dy}{dx} = \frac{-2x}{(y^2 + x^2) + 2y(y + 1) - 2ky} \]

Try Premium now!
Try Premium and ask Thoth AI unlimited math questions now!
Maybe later Go Premium
Study can be a real struggle
Why not UpStudy it?
Select your plan below
Premium

You can enjoy

Start now
  • Step-by-step explanations
  • 24/7 expert live tutors
  • Unlimited number of questions
  • No interruptions
  • Full access to Answer and Solution
  • Full Access to PDF Chat, UpStudy Chat, Browsing Chat
Basic

Totally free but limited

  • Limited Solution
Welcome to UpStudy!
Please sign in to continue the Thoth AI Chat journey
Continue with Email
Or continue with
By clicking “Sign in”, you agree to our Terms of Use & Privacy Policy