Combine: \( \left(\frac{1}{3} x^{2}-\frac{5}{6} x+\frac{3}{4}\right)-\left(\frac{7}{12} x^{2}+\frac{1}{2} x-\frac{2}{3}\right) \)
Real Tutor Solution
Answer
Solution
Reviewed and approved by the UpStudy tutoring team
The Deep Dive
To combine the expressions, we start by distributing the negative sign through the second parentheses: \[ \left(\frac{1}{3} x^{2} - \frac{5}{6} x + \frac{3}{4}\right) - \left(\frac{7}{12} x^{2} + \frac{1}{2} x - \frac{2}{3}\right) = \frac{1}{3} x^{2} - \frac{5}{6} x + \frac{3}{4} - \frac{7}{12} x^{2} - \frac{1}{2} x + \frac{2}{3} \] Now, we will combine like terms. First, let’s work with the \(x^2\) terms: \[ \frac{1}{3} x^{2} - \frac{7}{12} x^{2} \] To combine these, we need a common denominator. The least common multiple of 3 and 12 is 12. Thus: \[ \frac{1}{3} = \frac{4}{12} \] So, \[ \frac{4}{12} x^{2} - \frac{7}{12} x^{2} = \frac{(4 - 7)}{12} x^{2} = -\frac{3}{12} x^{2} = -\frac{1}{4} x^{2} \] Now for the \(x\) terms: \[ -\frac{5}{6} x - \frac{1}{2} x = -\frac{5}{6} x - \frac{3}{6} x = -\frac{8}{6} x = -\frac{4}{3} x \] Finally, we combine the constant terms: \[ \frac{3}{4} + \frac{2}{3} \] To combine these, we need to find the least common multiple of 4 and 3, which is 12. Thus: \[ \frac{3}{4} = \frac{9}{12}, \quad \frac{2}{3} = \frac{8}{12} \] Combining these gives: \[ \frac{9}{12} + \frac{8}{12} = \frac{17}{12} \] Putting it all together, we have: \[ -\frac{1}{4} x^{2} - \frac{4}{3} x + \frac{17}{12} \] So the final combined expression is: \[ -\frac{1}{4} x^{2} - \frac{4}{3} x + \frac{17}{12} \]