Question
4. If \( a=3, b=2 \) and \( c=4 \), calculate the follov Example: \( \begin{array}{l}a(b+c)=a \times b+a \times c \\ 3(2+4)=3 \times 2+3 \times 4 \\ 3(6)=6+12 \\ 18=18\end{array} \) \( \begin{array}{ll}\text { a. } b(a+c) & \text { b. } c(b+a)\end{array} \)
Ask by Elliott Boone. in South Africa
Jan 23,2025
Real Tutor Solution
Tutor-Verified Answer
Answer
a. \( b(a+c) = 14 \)
b. \( c(b+a) = 20 \)
Solution
Let's solve the two expressions step by step using the given values \( a = 3 \), \( b = 2 \), and \( c = 4 \).
### Part a: Calculate \( b(a+c) \)
1. **Substitute the values**:
\[
b(a+c) = 2(3+4)
\]
2. **Calculate the expression inside the parentheses**:
\[
3 + 4 = 7
\]
3. **Multiply by \( b \)**:
\[
2 \times 7 = 14
\]
So, the result for part a is:
\[
b(a+c) = 14
\]
### Part b: Calculate \( c(b+a) \)
1. **Substitute the values**:
\[
c(b+a) = 4(2+3)
\]
2. **Calculate the expression inside the parentheses**:
\[
2 + 3 = 5
\]
3. **Multiply by \( c \)**:
\[
4 \times 5 = 20
\]
So, the result for part b is:
\[
c(b+a) = 20
\]
### Final Results
- a. \( b(a+c) = 14 \)
- b. \( c(b+a) = 20 \)
Reviewed and approved by the UpStudy tutoring team
Like
error msg
Explain
Simplify this solution
Mind Expander
To tackle the first expression, \( b(a+c) \): \[ \begin{array}{l} b(a+c)=b \times a + b \times c \\ 2(3+4) = 2 \times 3 + 2 \times 4 \\ 2(7) = 6 + 8 \\ 14 = 14 \end{array} \] Now, for the second expression, \( c(b+a) \): \[ \begin{array}{l} c(b+a)=c \times b + c \times a \\ 4(2+3) = 4 \times 2 + 4 \times 3 \\ 4(5) = 8 + 12 \\ 20 = 20 \end{array} \] In both cases, the calculations hold true!