Question
upstudy study bank question image url

Show all your working. 8 Work out the value of each expression when \( w=3, x=2, y=-4 \) and \( z=-2 \). \( \begin{array}{llll}\text { a } 3(w+x) & \text { b } x(2 w-y) & \text { c } & z(2 w-y) \\ \text { d } w-z^{3} & \text { e } x^{2}+z^{2} & \text { f } & (2 z)^{3} \\ \text { g } \frac{x}{2}-\frac{y}{4} & \text { h } \frac{w x}{z}+y & \text { i } & 2\left(x^{3}-z^{2}\right) \\ \text { j } 20-2 w^{2} & \text { k } w+z(3 x-2 y) & \text { l } & (3 z)^{2}-x^{5}\end{array} \)

Ask by Ward Mitchell. in Malaysia
Jan 25,2025

Real Tutor Solution

Tutor-Verified Answer

Answer

Here are the values of each expression when \( w=3, x=2, y=-4, z=-2 \): a. \( 3(w + x) = 15 \) b. \( x(2w - y) = 20 \) c. \( z(2w - y) = -20 \) d. \( w - z^{3} = 11 \) e. \( x^{2} + z^{2} = 8 \) f. \( (2z)^{3} = -64 \) g. \( \frac{x}{2} - \frac{y}{4} = 2 \) h. \( \frac{w x}{z} + y = -7 \) i. \( 2(x^{3} - z^{2}) = 8 \) j. \( 20 - 2w^{2} = 2 \) k. \( w + z(3x - 2y) = -25 \) l. \( (3z)^{2} - x^{5} = 4 \)

Solution

Certainly! Let's evaluate each expression step by step using the given values: \[ w = 3, \quad x = 2, \quad y = -4, \quad z = -2 \] --- **a. \( 3(w + x) \)** 1. **Substitute the values:** \[ 3(3 + 2) \] 2. **Calculate inside the parentheses:** \[ 3(5) \] 3. **Multiply:** \[ 15 \] **Answer:** \( 15 \) --- **b. \( x(2w - y) \)** 1. **Substitute the values:** \[ 2(2 \times 3 - (-4)) \] 2. **Multiply \( 2 \times 3 \):** \[ 2(6 + 4) \] 3. **Simplify inside the parentheses:** \[ 2(10) \] 4. **Multiply:** \[ 20 \] **Answer:** \( 20 \) --- **c. \( z(2w - y) \)** 1. **Substitute the values:** \[ -2(2 \times 3 - (-4)) \] 2. **Multiply \( 2 \times 3 \):** \[ -2(6 + 4) \] 3. **Simplify inside the parentheses:** \[ -2(10) \] 4. **Multiply:** \[ -20 \] **Answer:** \( -20 \) --- **d. \( w - z^{3} \)** 1. **Substitute the values:** \[ 3 - (-2)^{3} \] 2. **Calculate \( (-2)^{3} \):** \[ 3 - (-8) \] 3. **Subtract (which becomes addition):** \[ 3 + 8 \] 4. **Add:** \[ 11 \] **Answer:** \( 11 \) --- **e. \( x^{2} + z^{2} \)** 1. **Substitute the values:** \[ 2^{2} + (-2)^{2} \] 2. **Calculate squares:** \[ 4 + 4 \] 3. **Add:** \[ 8 \] **Answer:** \( 8 \) --- **f. \( (2z)^{3} \)** 1. **Substitute the values:** \[ (2 \times -2)^{3} \] 2. **Multiply inside the parentheses:** \[ (-4)^{3} \] 3. **Calculate the cube:** \[ -64 \] **Answer:** \( -64 \) --- **g. \( \frac{x}{2} - \frac{y}{4} \)** 1. **Substitute the values:** \[ \frac{2}{2} - \frac{-4}{4} \] 2. **Simplify each fraction:** \[ 1 - (-1) \] 3. **Subtract (which becomes addition):** \[ 1 + 1 \] 4. **Add:** \[ 2 \] **Answer:** \( 2 \) --- **h. \( \frac{w x}{z} + y \)** 1. **Substitute the values:** \[ \frac{3 \times 2}{-2} + (-4) \] 2. **Multiply in the numerator:** \[ \frac{6}{-2} - 4 \] 3. **Divide:** \[ -3 - 4 \] 4. **Subtract:** \[ -7 \] **Answer:** \( -7 \) --- **i. \( 2\left(x^{3} - z^{2}\right) \)** 1. **Substitute the values:** \[ 2\left(2^{3} - (-2)^{2}\right) \] 2. **Calculate exponents:** \[ 2\left(8 - 4\right) \] 3. **Subtract inside the parentheses:** \[ 2(4) \] 4. **Multiply:** \[ 8 \] **Answer:** \( 8 \) --- **j. \( 20 - 2w^{2} \)** 1. **Substitute the values:** \[ 20 - 2 \times 3^{2} \] 2. **Calculate the square:** \[ 20 - 2 \times 9 \] 3. **Multiply:** \[ 20 - 18 \] 4. **Subtract:** \[ 2 \] **Answer:** \( 2 \) --- **k. \( w + z(3x - 2y) \)** 1. **Substitute the values:** \[ 3 + (-2)(3 \times 2 - 2 \times (-4)) \] 2. **Calculate inside the parentheses:** \[ 3 + (-2)(6 + 8) \] 3. **Simplify inside the parentheses:** \[ 3 + (-2)(14) \] 4. **Multiply:** \[ 3 - 28 \] 5. **Subtract:** \[ -25 \] **Answer:** \( -25 \) --- **l. \( (3z)^{2} - x^{5} \)** 1. **Substitute the values:** \[ (3 \times -2)^{2} - 2^{5} \] 2. **Multiply inside the parentheses:** \[ (-6)^{2} - 32 \] 3. **Calculate the square:** \[ 36 - 32 \] 4. **Subtract:** \[ 4 \] **Answer:** \( 4 \) --- ### **Summary of Results:** | Expression | Value | |------------|-------| | a. \( 3(w + x) \) | 15 | | b. \( x(2w - y) \) | 20 | | c. \( z(2w - y) \) | -20 | | d. \( w - z^{3} \) | 11 | | e. \( x^{2} + z^{2} \) | 8 | | f. \( (2z)^{3} \) | -64 | | g. \( \frac{x}{2} - \frac{y}{4} \) | 2 | | h. \( \frac{w x}{z} + y \) | -7 | | i. \( 2(x^{3} - z^{2}) \) | 8 | | j. \( 20 - 2w^{2} \) | 2 | | k. \( w + z(3x - 2y) \) | -25 | | l. \( (3z)^{2} - x^{5} \) | 4 |

Reviewed and approved by the UpStudy tutoring team

error msg
Explain
Simplify this solution

Beyond the Answer

Let's work through each expression step by step using the values \( w=3, x=2, y=-4 \), and \( z=-2 \). **a**: \[ 3(w+x) = 3(3+2) = 3(5) = 15 \] **b**: \[ x(2w-y) = 2(2)(2-(-4)) = 2(6) = 12 \] **c**: \[ z(2w-y) = -2(2(3)-(-4)) = -2(6+4) = -2(10) = -20 \] **d**: \[ w-z^3 = 3 - (-2)^3 = 3 - (-8) = 3 + 8 = 11 \] **e**: \[ x^2 + z^2 = 2^2 + (-2)^2 = 4 + 4 = 8 \] **f**: \[ (2z)^3 = (2 \cdot -2)^3 = (-4)^3 = -64 \] **g**: \[ \frac{x}{2} - \frac{y}{4} = \frac{2}{2} - \frac{-4}{4} = 1 + 1 = 2 \] **h**: \[ \frac{wx}{z} + y = \frac{(3)(2)}{-2} - 4 = \frac{6}{-2} - 4 = -3 - 4 = -7 \] **i**: \[ 2\left(x^3 - z^2\right) = 2(2^3 - (-2)^2) = 2(8 - 4) = 2(4) = 8 \] **j**: \[ 20-2w^2 = 20 - 2(3^2) = 20 - 2(9) = 20 - 18 = 2 \] **k**: \[ w + z(3x-2y) = 3 + (-2)(3(2)-2(-4)) = 3 + (-2)(6+8) = 3 - 2(14) = 3 - 28 = -25 \] **l**: \[ (3z)^2 - x^5 = (3(-2))^2 - 2^5 = (-6)^2 - 32 = 36 - 32 = 4 \] So, the values for each expression are: - a: 15 - b: 12 - c: -20 - d: 11 - e: 8 - f: -64 - g: 2 - h: -7 - i: 8 - j: 2 - k: -25 - l: 4

Related Questions

Latest Algebra Questions

Try Premium now!
Try Premium and ask Thoth AI unlimited math questions now!
Maybe later Go Premium
Study can be a real struggle
Why not UpStudy it?
Select your plan below
Premium

You can enjoy

Start now
  • Step-by-step explanations
  • 24/7 expert live tutors
  • Unlimited number of questions
  • No interruptions
  • Full access to Answer and Solution
  • Full Access to PDF Chat, UpStudy Chat, Browsing Chat
Basic

Totally free but limited

  • Limited Solution
Welcome to UpStudy!
Please sign in to continue the Thoth AI Chat journey
Continue with Email
Or continue with
By clicking “Sign in”, you agree to our Terms of Use & Privacy Policy