Question
upstudy study bank question image url

\[ x^{2} y^{\prime \prime}-5 x y^{\prime}+5 y=x \cdot \ln (x) \] - Escriba la ecuación característica para la solución homogénea en función de \( m \) : - Indique las raíces de la ecuación característica (Ejemplo de escritura: \( \left.\left\{m_{1}, m_{2}, \ldots m_{n}\right\}\right) \) : - Indique las soluciones homogéneas de la ecuación diferencial (Ejemplo de escritura: \( \left\{y_{1}, y_{2}, \ldots y_{n}\right\} \) sin las constantes): - Indique el valor del Wronskiano: - Indique la solución particular: . .

Ask by Hobbs Chen. in Colombia
Feb 02,2025

Real Tutor Solution

Tutor-Verified Answer

Answer

**Ecuación Característica:** \( m^{2} - 6m + 5 = 0 \) **Raíces:** \( \left\{1, 5\right\} \) **Soluciones Homogéneas:** \( \left\{x, x^{5}\right\} \) **Wronskiano:** \( W = 4x^{5} \) **Solución Particular:** \( y_{p} = -\dfrac{1}{8} x (\ln x)^{2} - \dfrac{1}{20} x \ln x \) **Solución General:** \( y(x) = C_{1} x + C_{2} x^{5} - \frac{1}{8} x (\ln x)^{2} - \frac{1}{20} x \ln x \)

Solution

Sign in to Unlock Answers for Free!

A Learning Platform Trusted by Millions of Real Students and Teachers.

star-icon Unlock

Reviewed and approved by the UpStudy tutoring team

Beyond the Answer

Para la ecuación diferencial dada, la ecuación característica se obtiene al sustituir \( y = e^{mx} \), lo que nos lleva a: \[ m^{2} - 5m + 5 = 0. \] Las raíces de esta ecuación características son: \[ m_{1}, m_{2} = \frac{5 \pm i\sqrt{15}}{2}. \] Las soluciones homogéneas de la ecuación diferencial son: \[ y_{1} = e^{\frac{5}{2}x} \cos\left(\frac{\sqrt{15}}{2} x\right), \quad y_{2} = e^{\frac{5}{2}x} \sin\left(\frac{\sqrt{15}}{2} x\right). \] El valor del Wronskiano se calcula como: \[ W(y_{1}, y_{2}) = e^{5x}. \] Para la solución particular, dado que el lado derecho es \( x \ln(x) \), podemos usar el método de coeficientes indeterminados y encontramos que: \[ y_{p} = Ax \ln(x) + Bx. \]

Related Questions

Latest Other Questions

Using the ESRT to find the Relative Humidity - Relative Humidity is the extent to which air is saturated with water vapor. - Relative humidity is the ratio of the amount of water vapor in the air to the maximum amount of water vapor that can be present could be present in the air at that temperature. - Relative Humidity is expressed as a percent (\%). - Evaporation is a cooling process. - Therefore, the wet-bulb temperature is always lower than the dry-bulb temperature EXCEPT when relative humidity is \( 100 \% \). Then the wet-bulb temperature is equal to the dry-bulb temperature. Practice Problems: 1. Dry-bulb Temperature: \( \mathbf{2 0}^{\circ} \mathrm{C} \) Wet-bulb Temperature: \( 7^{\circ} \mathrm{C} \) Difference between wet \& dry bulb temperatures: \( \qquad \) Relative Humidity: \( \qquad \) \% 2. Dry-bulb Temperature: \( 8^{\circ} \mathrm{C} \) Wet-bulb Temperature: \( 5^{\circ} \mathrm{C} \) Difference between wet \& dry bulb temperatures: \( \qquad \) Relative Humidity: \( \qquad \) \% 3. Dry-bulb Temperature: \( \mathbf{2 4}^{\circ} \mathrm{C} \) Wet-bulb Temperature: \( \mathbf{2 2}^{\circ} \mathrm{C} \) Difference between wet \& dry bulb temperatures: \( \qquad \) Relative Humidity: \( \qquad \) \% 4. Dry-bulb Temperature: \( \mathbf{2 0}^{\circ} \mathrm{C} \) Wet-bulb Temperature: \( 7^{\circ} \mathrm{C} \) Difference between wet \& dry bulb temperatures: \( \qquad \) Relative Humidity: \( \qquad \) \% 5. Dry-bulb Temperature: \( 10^{\circ} \mathrm{C} \) Wet-bulb Temperature: \( 1^{\circ} \mathrm{C} \) Difference between wet \& dry bulb temperatures: \( \qquad \) Relative Humidity: \( \qquad \) \% 6. Dry-bulb Temperature: \( 6^{\circ} \mathrm{C} \) Wet-bulb Temperature: \( 5^{\circ} \mathrm{C} \) Difference between wet \& dry bulb temperatures: \( \qquad \) Relative Humidity: \( \qquad \) \% 7. Dry-bulb Temperature: \( 30^{\circ} \mathrm{C} \) Wet-bulb Temperature: \( 23^{\circ} \mathrm{C} \) Difference between wet \& dry bulb temperatures: \( \qquad \) Let's try some more complex examples... 8. Dry-bulb Temperature: \( -14^{\circ} \mathrm{C} \) Wet-bulb Temperature: \( -15^{\circ} \mathrm{C} \) Difference between wet \& dry bulb temperatures: \( \qquad \) Relative Humidity: \( \qquad \) \% 9. Dry-bulb Temperature: \( -2^{\circ} \mathrm{C} \) Wet-bulb Temperature: \( \qquad \) \( { }^{\circ} \mathrm{C} \) Difference between wet \& dry bulb temperatures: \( \qquad \) Relative Humidity: 58 \% 10. Dry-bulb Temperature: \( -8^{\circ} \mathrm{C} \) Wet-bulb Temperature: \( \qquad \) \( { }^{\circ} \mathrm{C} \) Difference between wet \& dry bulb temperatures: \( \qquad \) Relative Humidity: 41 \%
Other United States Feb 04, 2025
Try Premium now!
Try Premium and ask Thoth AI unlimited math questions now!
Maybe later Go Premium
Study can be a real struggle
Why not UpStudy it?
Select your plan below
Premium

You can enjoy

Start now
  • Step-by-step explanations
  • 24/7 expert live tutors
  • Unlimited number of questions
  • No interruptions
  • Full access to Answer and Solution
  • Full Access to PDF Chat, UpStudy Chat, Browsing Chat
Basic

Totally free but limited

  • Limited Solution
Welcome to UpStudy!
Please sign in to continue the Thoth AI Chat journey
Continue with Email
Or continue with
By clicking “Sign in”, you agree to our Terms of Use & Privacy Policy