Question

\( y=\sinh (x) \)

Ask by Welch Clark. in Saudi Arabia
Jan 23,2025

Real Tutor Solution

Tutor-Verified Answer

Answer

双曲正弦函数 \( \sinh(x) \) 的定义是: \[ y = \sinh(x) = \frac{e^{x} - e^{-x}}{2} \] **性质**: 1. 奇函数:\( \sinh(-x) = -\sinh(x) \) 2. 导数:\( \frac{d}{dx} \sinh(x) = \cosh(x) \) 3. 反函数:\( \sinh^{-1}(y) = \ln(y + \sqrt{y^2 + 1}) \) 4. 平方关系:\( \cosh^2(x) - \sinh^2(x) = 1 \) **图像**:双曲正弦函数的图像类似于普通正弦函数,但增长速度更快,关于原点对称。 **应用**: - 描述悬链线 - 狭义相对论中的洛伦兹变换 - 交流电路中的微分方程 **例题**: 1. 计算 \( \sinh(0) = 0 \) 2. 导数 \( \frac{d}{dx} \sinh(x) = \cosh(x) \) 3. 反函数 \( \sinh^{-1}(y) = \ln(y + \sqrt{y^2 + 1}) \) 通过这些内容,你可以更好地了解双曲正弦函数的定义、性质和应用。

Solution

双曲正弦函数(hyperbolic sine)定义如下: \[ y = \sinh(x) \] ### 定义 双曲正弦函数可以通过指数函数表示为: \[ \sinh(x) = \frac{e^{x} - e^{-x}}{2} \] 其中,\( e \) 是自然对数的底数,约等于2.71828。 ### 性质 1. **奇函数**: \[ \sinh(-x) = -\sinh(x) \] 2. **导数**: \[ \frac{d}{dx} \sinh(x) = \cosh(x) \] 3. **反函数**: 双曲正弦函数的反函数称为双曲反正弦函数(arsinh或sinh⁻¹): \[ \sinh^{-1}(y) = \ln(y + \sqrt{y^2 + 1}) \] 4. **平方关系**: \[ \cosh^2(x) - \sinh^2(x) = 1 \] ### 图像 双曲正弦函数的图像类似于普通正弦函数,但其增长速度更快。函数图像关于原点对称,且随着 \( x \) 的增大或减小,函数值呈指数级增长。 ![sinh(x) 图像](https://upload.wikimedia.org/wikipedia/commons/thumb/f/fc/Hyperbolic_functions.svg/300px-Hyperbolic_functions.svg.png) *图1:双曲正弦函数 \( \sinh(x) \) 和双曲余弦函数 \( \cosh(x) \) 的图像* ### 应用 双曲正弦函数广泛应用于工程、物理学和数学领域。例如: - **悬链线**:描述悬挂在两点之间的均匀重力下挂绳的形状。 - **相对论**:在狭义相对论中,双曲函数用于描述洛伦兹变换。 - **电路分析**:在交流电路中,双曲函数用来解决某些微分方程。 ### 例题 **计算 \( \sinh(0) \) 的值** 根据定义: \[ \sinh(0) = \frac{e^{0} - e^{-0}}{2} = \frac{1 - 1}{2} = 0 \] **求导数** 已知: \[ \frac{d}{dx} \sinh(x) = \cosh(x) = \frac{e^{x} + e^{-x}}{2} \] **反函数求解** 求 \( y = \sinh(x) \) 的反函数: \[ x = \sinh^{-1}(y) = \ln(y + \sqrt{y^2 + 1}) \] 通过以上内容,希望能帮助你更好地理解双曲正弦函数 \( \sinh(x) \)。

Reviewed and approved by the UpStudy tutoring team

error msg
Explain
Simplify this solution

Extra Insights

Did you know that the hyperbolic sine function, \( \sinh(x) \), comes from the geometry of hyperbolas, just as the regular sine function comes from circles? While the sine function describes relationships in circular motion, \( \sinh(x) \) can describe the shape of a hanging cable, known as a catenary. This makes it super useful when analyzing structures like bridges! In terms of real-world application, engineers often use \( \sinh(x) \) to model behavior in systems where exponential growth is observed. For example, in the field of electronics, the relationship between voltage and current in certain types of diodes can be expressed using hyperbolic functions. So next time you see a power line, remember, it might just be following a \( \sinh(x) \) curve!

Related Questions

Latest Pre Calculus Questions

Try Premium now!
Try Premium and ask Thoth AI unlimited math questions now!
Maybe later Go Premium
Study can be a real struggle
Why not UpStudy it?
Select your plan below
Premium

You can enjoy

Start now
  • Step-by-step explanations
  • 24/7 expert live tutors
  • Unlimited number of questions
  • No interruptions
  • Full access to Answer and Solution
  • Full Access to PDF Chat, UpStudy Chat, Browsing Chat
Basic

Totally free but limited

  • Limited Solution
Welcome to UpStudy!
Please sign in to continue the Thoth AI Chat journey
Continue with Email
Or continue with
By clicking “Sign in”, you agree to our Terms of Use & Privacy Policy