6. \( (2 x-3 y)^{2}-(x-y)(3 x+2 y) \)
Real Tutor Solution
Answer
Solution
Reviewed and approved by the UpStudy tutoring team
Beyond the Answer
To simplify the expression \( (2x - 3y)^{2} - (x - y)(3x + 2y) \), let's first expand both parts. Expanding \( (2x - 3y)^{2} \): \[ (2x - 3y)^{2} = 4x^{2} - 12xy + 9y^{2} \] Now, expanding \( (x - y)(3x + 2y) \): \[ (x - y)(3x + 2y) = 3x^{2} + 2xy - 3xy - 2y^{2} = 3x^{2} - xy - 2y^{2} \] Now, substitute the expanded expressions back into the original expression: \[ (4x^{2} - 12xy + 9y^{2}) - (3x^{2} - xy - 2y^{2}) \] Distributing the negative sign: \[ 4x^{2} - 12xy + 9y^{2} - 3x^{2} + xy + 2y^{2} \] Now, combine like terms: \[ (4x^{2} - 3x^{2}) + (-12xy + xy) + (9y^{2} + 2y^{2}) = x^{2} - 11xy + 11y^{2} \] The final simplified expression is: \[ \boxed{x^{2} - 11xy + 11y^{2}} \]