Answer
Here are the simplified results for each expression:
(a) \( 1250 \)
(b) \( 81 \)
(c) \( \frac{4}{3} \) (or \( 1\frac{1}{3} \) or \( 1.\dot{3} \))
(d) \( \frac{2}{3} \) (or \( 0.\dot{6} \))
(e) \( 2 \)
(f) \( \frac{1+3^{1-x}}{2} \)
(g) \( \frac{1}{2} \) (or \( 0.5 \))
(h) \( 3 \)
(i) \( \frac{487}{15} \)
Solution
Simplify the expression by following steps:
- step0: Solution:
\(\frac{\left(4^{x}+2^{2x-1}\right)}{2^{2x-1}}\)
- step1: Remove the parentheses:
\(\frac{4^{x}+2^{2x-1}}{2^{2x-1}}\)
- step2: Add the terms:
\(\frac{3\times 2^{2x-1}}{2^{2x-1}}\)
- step3: Rewrite the expression:
\(3\times 1\)
- step4: Multiply:
\(3\)
Calculate or simplify the expression \( (10^x * 25^(x+1)) / (5^x * 50^(x-1)) \).
Simplify the expression by following steps:
- step0: Solution:
\(\frac{\left(10^{x}\times 25^{x+1}\right)}{\left(5^{x}\times 50^{x-1}\right)}\)
- step1: Remove the parentheses:
\(\frac{10^{x}\times 25^{x+1}}{5^{x}\times 50^{x-1}}\)
- step2: Factor the expression:
\(\frac{5^{x}\times 2^{x}\times 25^{x+1}}{5^{x}\times 50^{x-1}}\)
- step3: Reduce the fraction:
\(\frac{2^{x}\times 25^{x+1}}{50^{x-1}}\)
- step4: Factor the expression:
\(\frac{2^{x}\times 25^{x+1}}{2^{x-1}\times 25^{x-1}}\)
- step5: Reduce the fraction:
\(2\times 25^{2}\)
- step6: Evaluate the power:
\(2\times 625\)
- step7: Multiply:
\(1250\)
Calculate or simplify the expression \( (2 * 3^(x+2) + 3^(x-3)) / (5 * 3^(x-2)) \).
Simplify the expression by following steps:
- step0: Solution:
\(\frac{\left(2\times 3^{x+2}+3^{x-3}\right)}{\left(5\times 3^{x-2}\right)}\)
- step1: Remove the parentheses:
\(\frac{2\times 3^{x+2}+3^{x-3}}{5\times 3^{x-2}}\)
- step2: Add the terms:
\(\frac{487\times 3^{x-3}}{5\times 3^{x-2}}\)
- step3: Reduce the fraction:
\(\frac{487}{5\times 3}\)
- step4: Calculate:
\(\frac{487}{15}\)
Calculate or simplify the expression \( (2^(x+2) - 2^(x+3)) / (2^(x+1) - 2^(x+2)) \).
Simplify the expression by following steps:
- step0: Solution:
\(\frac{\left(2^{x+2}-2^{x+3}\right)}{\left(2^{x+1}-2^{x+2}\right)}\)
- step1: Remove the parentheses:
\(\frac{2^{x+2}-2^{x+3}}{2^{x+1}-2^{x+2}}\)
- step2: Subtract the terms:
\(\frac{-2^{x+2}}{2^{x+1}-2^{x+2}}\)
- step3: Subtract the terms:
\(\frac{-2^{x+2}}{-2^{x+1}}\)
- step4: Calculate:
\(2^{x+2-\left(x+1\right)}\)
- step5: Calculate:
\(2\)
Calculate or simplify the expression \( (6^x * 9^(x+1) * 2) / (27^(x+1) * 2^(x-1)) \).
Simplify the expression by following steps:
- step0: Solution:
\(\frac{\left(6^{x}\times 9^{x+1}\times 2\right)}{\left(27^{x+1}\times 2^{x-1}\right)}\)
- step1: Remove the parentheses:
\(\frac{6^{x}\times 9^{x+1}\times 2}{27^{x+1}\times 2^{x-1}}\)
- step2: Multiply by \(a^{-n}:\)
\(\frac{6^{x}\times 9^{x+1}\times 2\times 2^{-\left(x-1\right)}}{27^{x+1}}\)
- step3: Calculate:
\(\frac{6^{x}\times 9^{x+1}\times 2\times 2^{-x+1}}{27^{x+1}}\)
- step4: Multiply:
\(\frac{6^{x}\times 9^{x+1}\times 2^{2-x}}{27^{x+1}}\)
- step5: Factor the expression:
\(\frac{3^{x}\times 2^{x}\times 9^{x+1}\times 2^{2-x}}{3^{3x+3}}\)
- step6: Reduce the fraction:
\(\frac{2^{x}\times 9^{x+1}\times 2^{2-x}}{3^{2x+3}}\)
- step7: Factor the expression:
\(\frac{2^{x}\times 3^{2x+2}\times 2^{2-x}}{3^{2x+3}}\)
- step8: Reduce the fraction:
\(\frac{2^{x}\times 2^{2-x}}{3}\)
- step9: Multiply the terms:
\(\frac{2^{2}}{3}\)
- step10: Evaluate the power:
\(\frac{4}{3}\)
Calculate or simplify the expression \( (6^(n+2) * 10^(n-2)) / (4^n * 15^(n-2)) \).
Simplify the expression by following steps:
- step0: Solution:
\(\frac{\left(6^{n+2}\times 10^{n-2}\right)}{\left(4^{n}\times 15^{n-2}\right)}\)
- step1: Remove the parentheses:
\(\frac{6^{n+2}\times 10^{n-2}}{4^{n}\times 15^{n-2}}\)
- step2: Factor the expression:
\(\frac{2^{n+2}\times 3^{n+2}\times 10^{n-2}}{2^{2n}\times 15^{n-2}}\)
- step3: Reduce the fraction:
\(\frac{3^{n+2}\times 10^{n-2}}{2^{n-2}\times 15^{n-2}}\)
- step4: Factor the expression:
\(\frac{3^{n+2}\times 10^{n-2}}{2^{n-2}\times 3^{n-2}\times 5^{n-2}}\)
- step5: Reduce the fraction:
\(\frac{3^{4}\times 10^{n-2}}{2^{n-2}\times 5^{n-2}}\)
- step6: Factor the expression:
\(\frac{3^{4}\times 2^{n-2}\times 5^{n-2}}{2^{n-2}\times 5^{n-2}}\)
- step7: Reduce the fraction:
\(3^{4}\)
- step8: Evaluate the power:
\(81\)
Calculate or simplify the expression \( (3 * 2^x - 2^(x-1)) / (2^x + 2^(x+2)) \).
Simplify the expression by following steps:
- step0: Solution:
\(\frac{\left(3\times 2^{x}-2^{x-1}\right)}{\left(2^{x}+2^{x+2}\right)}\)
- step1: Remove the parentheses:
\(\frac{3\times 2^{x}-2^{x-1}}{2^{x}+2^{x+2}}\)
- step2: Add the terms:
\(\frac{3\times 2^{x}-2^{x-1}}{5\times 2^{x}}\)
- step3: Factor the expression:
\(\frac{\left(3-2^{-1}\right)\times 2^{x}}{5\times 2^{x}}\)
- step4: Reduce the fraction:
\(\frac{3-2^{-1}}{5}\)
- step5: Calculate:
\(\frac{\frac{5}{2}}{5}\)
- step6: Multiply by the reciprocal:
\(\frac{5}{2}\times \frac{1}{5}\)
- step7: Reduce the numbers:
\(\frac{1}{2}\times 1\)
- step8: Multiply:
\(\frac{1}{2}\)
Calculate or simplify the expression \( (9^x + 3^(x+1)) / (18^x * 2^(1-x)) \).
Simplify the expression by following steps:
- step0: Solution:
\(\frac{\left(9^{x}+3^{x+1}\right)}{\left(18^{x}\times 2^{1-x}\right)}\)
- step1: Remove the parentheses:
\(\frac{9^{x}+3^{x+1}}{18^{x}\times 2^{1-x}}\)
- step2: Multiply the terms:
\(\frac{9^{x}+3^{x+1}}{2\times 9^{x}}\)
- step3: Factor the expression:
\(\frac{3^{x}\left(3^{x}+3\right)}{2\times 3^{2x}}\)
- step4: Reduce the fraction:
\(\frac{3^{x}+3}{2\times 3^{x}}\)
- step5: Factor the expression:
\(\frac{3\left(3^{x-1}+1\right)}{2\times 3^{x}}\)
- step6: Divide the numbers:
\(\frac{3^{1-x}\left(3^{x-1}+1\right)}{2}\)
- step7: Calculate:
\(\frac{1+3^{1-x}}{2}\)
Calculate or simplify the expression \( (8^n * 6^(n-3) * 9^(1-n)) / (16^(n-1) * 3^(-n)) \).
Simplify the expression by following steps:
- step0: Solution:
\(\frac{\left(8^{n}\times 6^{n-3}\times 9^{1-n}\right)}{\left(16^{n-1}\times 3^{-n}\right)}\)
- step1: Remove the parentheses:
\(\frac{8^{n}\times 6^{n-3}\times 9^{1-n}}{16^{n-1}\times 3^{-n}}\)
- step2: Factor the expression:
\(\frac{2^{3n}\times 6^{n-3}\times 9^{1-n}}{2^{4n-4}\times 3^{-n}}\)
- step3: Reduce the fraction:
\(\frac{6^{n-3}\times 9^{1-n}}{2^{n-4}\times 3^{-n}}\)
- step4: Factor the expression:
\(\frac{2^{n-3}\times 3^{n-3}\times 9^{1-n}}{2^{n-4}\times 3^{-n}}\)
- step5: Reduce the fraction:
\(2\times 3^{2n-3}\times 9^{1-n}\)
- step6: Transform the expression:
\(2\times 3^{2n-3}\times 3^{2\left(1-n\right)}\)
- step7: Multiply the terms:
\(2\times 3^{2n-3+2\left(1-n\right)}\)
- step8: Calculate:
\(2\times 3^{-1}\)
- step9: Use the properties of exponents:
\(2\times \frac{1}{3}\)
- step10: Multiply:
\(\frac{2}{3}\)
Here are the simplified results for each expression:
(a)
\[
\frac{10^{x} \cdot 25^{x+1}}{5^{x} \cdot 50^{x-1}} = 1250
\]
(b)
\[
\frac{6^{n+2} \times 10^{n-2}}{4^{n} \times 15^{n-2}} = 81
\]
(c)
\[
\frac{6^{x} \cdot 9^{x+1} \cdot 2}{27^{x+1} \cdot 2^{x-1}} = \frac{4}{3} \quad \text{(or } 1\frac{1}{3} \text{ or } 1.\dot{3} \text{)}
\]
(d)
\[
\frac{8^{n} \cdot 6^{n-3} \cdot 9^{1-n}}{16^{n-1} \cdot 3^{-n}} = \frac{2}{3} \quad \text{(or } 0.\dot{6} \text{)}
\]
(e)
\[
\frac{2^{x+2}-2^{x+3}}{2^{x+1}-2^{x+2}} = 2
\]
(f)
\[
\frac{9^{x}+3^{x+1}}{18^{x} \cdot 2^{1-x}} = \frac{1+3^{1-x}}{2}
\]
(g)
\[
\frac{3 \cdot 2^{x}-2^{x-1}}{2^{x}+2^{x+2}} = \frac{1}{2} \quad \text{(or } 0.5 \text{)}
\]
(h)
\[
\frac{4^{x}+2^{2 x-1}}{2^{2 x-1}} = 3
\]
(i)
\[
\frac{2 \cdot 3^{x+2}+3^{x-3}}{5 \cdot 3^{x-2}} = \frac{487}{15}
\]
If you need further assistance or explanations for any specific part, feel free to ask!
Reviewed and approved by the UpStudy tutoring team
Explain
Simplify this solution