Question
upstudy study bank question image url

Simplify the following: \( \begin{array}{lll}\text { (a) } \frac{10^{x} \cdot 25^{x+1}}{5^{x} \cdot 50^{x-1}} & \text { (b) } \frac{6^{n+2} \times 10^{n-2}}{4^{n} \times 15^{n-2}} & \text { (c) } \frac{6^{x} \cdot 9^{x+1} \cdot 2}{27^{x+1} \cdot 2^{x-1}} \\ \text { (d) } \frac{8^{n} \cdot 6^{n-3} \cdot 9^{1-n}}{16^{n-1} \cdot 3^{-n}} & \text { (e) } \frac{2^{x+2}-2^{x+3}}{2^{x+1}-2^{x+2}} & \text { (f) } \frac{9^{x}+3^{x+1}}{18^{x} \cdot 2^{1-x}} \\ \text { (g) } \frac{3 \cdot 2^{x}-2^{x-1}}{2^{x}+2^{x+2}} & \text { (h) } \frac{4^{x}+2^{2 x-1}}{2^{2 x-1}} & \text { (i) } \frac{2.3^{x+2}+3^{x-3}}{5 \cdot 3^{x-2}}\end{array} \)

Ask by Black Morgan. in South Africa
Jan 21,2025

Real Tutor Solution

Tutor-Verified Answer

Answer

Here are the simplified results for each expression: (a) \( 1250 \) (b) \( 81 \) (c) \( \frac{4}{3} \) (or \( 1\frac{1}{3} \) or \( 1.\dot{3} \)) (d) \( \frac{2}{3} \) (or \( 0.\dot{6} \)) (e) \( 2 \) (f) \( \frac{1+3^{1-x}}{2} \) (g) \( \frac{1}{2} \) (or \( 0.5 \)) (h) \( 3 \) (i) \( \frac{487}{15} \)

Solution

Simplify the expression by following steps: - step0: Solution: \(\frac{\left(4^{x}+2^{2x-1}\right)}{2^{2x-1}}\) - step1: Remove the parentheses: \(\frac{4^{x}+2^{2x-1}}{2^{2x-1}}\) - step2: Add the terms: \(\frac{3\times 2^{2x-1}}{2^{2x-1}}\) - step3: Rewrite the expression: \(3\times 1\) - step4: Multiply: \(3\) Calculate or simplify the expression \( (10^x * 25^(x+1)) / (5^x * 50^(x-1)) \). Simplify the expression by following steps: - step0: Solution: \(\frac{\left(10^{x}\times 25^{x+1}\right)}{\left(5^{x}\times 50^{x-1}\right)}\) - step1: Remove the parentheses: \(\frac{10^{x}\times 25^{x+1}}{5^{x}\times 50^{x-1}}\) - step2: Factor the expression: \(\frac{5^{x}\times 2^{x}\times 25^{x+1}}{5^{x}\times 50^{x-1}}\) - step3: Reduce the fraction: \(\frac{2^{x}\times 25^{x+1}}{50^{x-1}}\) - step4: Factor the expression: \(\frac{2^{x}\times 25^{x+1}}{2^{x-1}\times 25^{x-1}}\) - step5: Reduce the fraction: \(2\times 25^{2}\) - step6: Evaluate the power: \(2\times 625\) - step7: Multiply: \(1250\) Calculate or simplify the expression \( (2 * 3^(x+2) + 3^(x-3)) / (5 * 3^(x-2)) \). Simplify the expression by following steps: - step0: Solution: \(\frac{\left(2\times 3^{x+2}+3^{x-3}\right)}{\left(5\times 3^{x-2}\right)}\) - step1: Remove the parentheses: \(\frac{2\times 3^{x+2}+3^{x-3}}{5\times 3^{x-2}}\) - step2: Add the terms: \(\frac{487\times 3^{x-3}}{5\times 3^{x-2}}\) - step3: Reduce the fraction: \(\frac{487}{5\times 3}\) - step4: Calculate: \(\frac{487}{15}\) Calculate or simplify the expression \( (2^(x+2) - 2^(x+3)) / (2^(x+1) - 2^(x+2)) \). Simplify the expression by following steps: - step0: Solution: \(\frac{\left(2^{x+2}-2^{x+3}\right)}{\left(2^{x+1}-2^{x+2}\right)}\) - step1: Remove the parentheses: \(\frac{2^{x+2}-2^{x+3}}{2^{x+1}-2^{x+2}}\) - step2: Subtract the terms: \(\frac{-2^{x+2}}{2^{x+1}-2^{x+2}}\) - step3: Subtract the terms: \(\frac{-2^{x+2}}{-2^{x+1}}\) - step4: Calculate: \(2^{x+2-\left(x+1\right)}\) - step5: Calculate: \(2\) Calculate or simplify the expression \( (6^x * 9^(x+1) * 2) / (27^(x+1) * 2^(x-1)) \). Simplify the expression by following steps: - step0: Solution: \(\frac{\left(6^{x}\times 9^{x+1}\times 2\right)}{\left(27^{x+1}\times 2^{x-1}\right)}\) - step1: Remove the parentheses: \(\frac{6^{x}\times 9^{x+1}\times 2}{27^{x+1}\times 2^{x-1}}\) - step2: Multiply by \(a^{-n}:\) \(\frac{6^{x}\times 9^{x+1}\times 2\times 2^{-\left(x-1\right)}}{27^{x+1}}\) - step3: Calculate: \(\frac{6^{x}\times 9^{x+1}\times 2\times 2^{-x+1}}{27^{x+1}}\) - step4: Multiply: \(\frac{6^{x}\times 9^{x+1}\times 2^{2-x}}{27^{x+1}}\) - step5: Factor the expression: \(\frac{3^{x}\times 2^{x}\times 9^{x+1}\times 2^{2-x}}{3^{3x+3}}\) - step6: Reduce the fraction: \(\frac{2^{x}\times 9^{x+1}\times 2^{2-x}}{3^{2x+3}}\) - step7: Factor the expression: \(\frac{2^{x}\times 3^{2x+2}\times 2^{2-x}}{3^{2x+3}}\) - step8: Reduce the fraction: \(\frac{2^{x}\times 2^{2-x}}{3}\) - step9: Multiply the terms: \(\frac{2^{2}}{3}\) - step10: Evaluate the power: \(\frac{4}{3}\) Calculate or simplify the expression \( (6^(n+2) * 10^(n-2)) / (4^n * 15^(n-2)) \). Simplify the expression by following steps: - step0: Solution: \(\frac{\left(6^{n+2}\times 10^{n-2}\right)}{\left(4^{n}\times 15^{n-2}\right)}\) - step1: Remove the parentheses: \(\frac{6^{n+2}\times 10^{n-2}}{4^{n}\times 15^{n-2}}\) - step2: Factor the expression: \(\frac{2^{n+2}\times 3^{n+2}\times 10^{n-2}}{2^{2n}\times 15^{n-2}}\) - step3: Reduce the fraction: \(\frac{3^{n+2}\times 10^{n-2}}{2^{n-2}\times 15^{n-2}}\) - step4: Factor the expression: \(\frac{3^{n+2}\times 10^{n-2}}{2^{n-2}\times 3^{n-2}\times 5^{n-2}}\) - step5: Reduce the fraction: \(\frac{3^{4}\times 10^{n-2}}{2^{n-2}\times 5^{n-2}}\) - step6: Factor the expression: \(\frac{3^{4}\times 2^{n-2}\times 5^{n-2}}{2^{n-2}\times 5^{n-2}}\) - step7: Reduce the fraction: \(3^{4}\) - step8: Evaluate the power: \(81\) Calculate or simplify the expression \( (3 * 2^x - 2^(x-1)) / (2^x + 2^(x+2)) \). Simplify the expression by following steps: - step0: Solution: \(\frac{\left(3\times 2^{x}-2^{x-1}\right)}{\left(2^{x}+2^{x+2}\right)}\) - step1: Remove the parentheses: \(\frac{3\times 2^{x}-2^{x-1}}{2^{x}+2^{x+2}}\) - step2: Add the terms: \(\frac{3\times 2^{x}-2^{x-1}}{5\times 2^{x}}\) - step3: Factor the expression: \(\frac{\left(3-2^{-1}\right)\times 2^{x}}{5\times 2^{x}}\) - step4: Reduce the fraction: \(\frac{3-2^{-1}}{5}\) - step5: Calculate: \(\frac{\frac{5}{2}}{5}\) - step6: Multiply by the reciprocal: \(\frac{5}{2}\times \frac{1}{5}\) - step7: Reduce the numbers: \(\frac{1}{2}\times 1\) - step8: Multiply: \(\frac{1}{2}\) Calculate or simplify the expression \( (9^x + 3^(x+1)) / (18^x * 2^(1-x)) \). Simplify the expression by following steps: - step0: Solution: \(\frac{\left(9^{x}+3^{x+1}\right)}{\left(18^{x}\times 2^{1-x}\right)}\) - step1: Remove the parentheses: \(\frac{9^{x}+3^{x+1}}{18^{x}\times 2^{1-x}}\) - step2: Multiply the terms: \(\frac{9^{x}+3^{x+1}}{2\times 9^{x}}\) - step3: Factor the expression: \(\frac{3^{x}\left(3^{x}+3\right)}{2\times 3^{2x}}\) - step4: Reduce the fraction: \(\frac{3^{x}+3}{2\times 3^{x}}\) - step5: Factor the expression: \(\frac{3\left(3^{x-1}+1\right)}{2\times 3^{x}}\) - step6: Divide the numbers: \(\frac{3^{1-x}\left(3^{x-1}+1\right)}{2}\) - step7: Calculate: \(\frac{1+3^{1-x}}{2}\) Calculate or simplify the expression \( (8^n * 6^(n-3) * 9^(1-n)) / (16^(n-1) * 3^(-n)) \). Simplify the expression by following steps: - step0: Solution: \(\frac{\left(8^{n}\times 6^{n-3}\times 9^{1-n}\right)}{\left(16^{n-1}\times 3^{-n}\right)}\) - step1: Remove the parentheses: \(\frac{8^{n}\times 6^{n-3}\times 9^{1-n}}{16^{n-1}\times 3^{-n}}\) - step2: Factor the expression: \(\frac{2^{3n}\times 6^{n-3}\times 9^{1-n}}{2^{4n-4}\times 3^{-n}}\) - step3: Reduce the fraction: \(\frac{6^{n-3}\times 9^{1-n}}{2^{n-4}\times 3^{-n}}\) - step4: Factor the expression: \(\frac{2^{n-3}\times 3^{n-3}\times 9^{1-n}}{2^{n-4}\times 3^{-n}}\) - step5: Reduce the fraction: \(2\times 3^{2n-3}\times 9^{1-n}\) - step6: Transform the expression: \(2\times 3^{2n-3}\times 3^{2\left(1-n\right)}\) - step7: Multiply the terms: \(2\times 3^{2n-3+2\left(1-n\right)}\) - step8: Calculate: \(2\times 3^{-1}\) - step9: Use the properties of exponents: \(2\times \frac{1}{3}\) - step10: Multiply: \(\frac{2}{3}\) Here are the simplified results for each expression: (a) \[ \frac{10^{x} \cdot 25^{x+1}}{5^{x} \cdot 50^{x-1}} = 1250 \] (b) \[ \frac{6^{n+2} \times 10^{n-2}}{4^{n} \times 15^{n-2}} = 81 \] (c) \[ \frac{6^{x} \cdot 9^{x+1} \cdot 2}{27^{x+1} \cdot 2^{x-1}} = \frac{4}{3} \quad \text{(or } 1\frac{1}{3} \text{ or } 1.\dot{3} \text{)} \] (d) \[ \frac{8^{n} \cdot 6^{n-3} \cdot 9^{1-n}}{16^{n-1} \cdot 3^{-n}} = \frac{2}{3} \quad \text{(or } 0.\dot{6} \text{)} \] (e) \[ \frac{2^{x+2}-2^{x+3}}{2^{x+1}-2^{x+2}} = 2 \] (f) \[ \frac{9^{x}+3^{x+1}}{18^{x} \cdot 2^{1-x}} = \frac{1+3^{1-x}}{2} \] (g) \[ \frac{3 \cdot 2^{x}-2^{x-1}}{2^{x}+2^{x+2}} = \frac{1}{2} \quad \text{(or } 0.5 \text{)} \] (h) \[ \frac{4^{x}+2^{2 x-1}}{2^{2 x-1}} = 3 \] (i) \[ \frac{2 \cdot 3^{x+2}+3^{x-3}}{5 \cdot 3^{x-2}} = \frac{487}{15} \] If you need further assistance or explanations for any specific part, feel free to ask!

Reviewed and approved by the UpStudy tutoring team

error msg
Explain
Simplify this solution

Extra Insights

Sure! Here are the simplified forms for each expression: (a) \( \frac{10^{x} \cdot 25^{x+1}}{5^{x} \cdot 50^{x-1}} = \frac{10^{x} \cdot 5^{2(x+1)}}{5^{x} \cdot 2 \cdot 5^{x} \cdot 5^{x-1}} = \frac{10^x \cdot 5^{2x + 2}}{5^{2x} \cdot 2} = \frac{10^x \cdot 5^2}{2} = \frac{25 \cdot 10^x}{2}\) (b) \( \frac{6^{n+2} \times 10^{n-2}}{4^{n} \times 15^{n-2}} = \frac{6^{n + 2} \cdot 10^{n - 2}}{(2^2)^{n} \cdot (3 \cdot 5)^{n - 2}} = \frac{6^{n + 2} \cdot 10^{n - 2}}{2^{2n} \cdot 3^{n - 2} \cdot 5^{n - 2}} = \frac{6^2 \cdot 6^{n} \cdot 10^{n - 2}}{2^{2n} \cdot 3^{n - 2} \cdot 5^{n - 2}}\) (c) \( \frac{6^{x} \cdot 9^{x+1} \cdot 2}{27^{x+1} \cdot 2^{x-1}} = \frac{6^{x} \cdot 9^{x} \cdot 9 \cdot 2}{3^{3(x+1)} \cdot 2^{1-x}} = \frac{6^x \cdot 9 \cdot 2}{3^{3x + 3}} \) (d) \( \frac{8^{n} \cdot 6^{n-3} \cdot 9^{1-n}}{16^{n-1} \cdot 3^{-n}} = \frac{(2^3)^{n} \cdot (2 \cdot 3)^{n-3} \cdot (3^2)^{1-n}}{(2^4)^{n-1} \cdot 3^{-n}} = \) (e) \( \frac{2^{x+2}-2^{x+3}}{2^{x+1}-2^{x+2}} = \frac{2^{x+2} (1 - 2)}{2^{x+1} (1 - 2)} = \frac{-2^{x+2}}{-2^{x+1}} = 2 \) (f) \( \frac{9^{x}+3^{x+1}}{18^{x} \cdot 2^{1-x}} = \frac{3^{2x} + 3^{x+1}}{(2 \cdot 3^{2})^x \cdot 2^{1-x}} = \) (g) \( \frac{3 \cdot 2^{x}-2^{x-1}}{2^{x}+2^{x+2}} = \frac{2^{x-1} (3\cdot 2 - 1)}{2^{x} (1 + 4)} = \) (h) \( \frac{4^{x}+2^{2x-1}}{2^{2x-1}} = \frac{2^{2x} + 2^{2x-1}}{2^{2x-1}} = \frac{2^{2x-1}(2 + 1)}{2^{2x-1}} = 3 \) (i) \( \frac{2\cdot3^{x+2}+3^{x-3}}{5\cdot3^{x-2}} = \frac{3^{x}(2\cdot3^2 + 3^{-5})}{5} = \) Let me know if you need more detailed steps!

Related Questions

Latest Algebra Questions

Try Premium now!
Try Premium and ask Thoth AI unlimited math questions now!
Maybe later Go Premium
Study can be a real struggle
Why not UpStudy it?
Select your plan below
Premium

You can enjoy

Start now
  • Step-by-step explanations
  • 24/7 expert live tutors
  • Unlimited number of questions
  • No interruptions
  • Full access to Answer and Solution
  • Full Access to PDF Chat, UpStudy Chat, Browsing Chat
Basic

Totally free but limited

  • Limited Solution
Welcome to UpStudy!
Please sign in to continue the Thoth AI Chat journey
Continue with Email
Or continue with
By clicking “Sign in”, you agree to our Terms of Use & Privacy Policy