Question
upstudy study bank question image url

Simplify each sum \( (3 \) points each). 15) \( (2+n)+\left(5+6 n^{2}+2 n\right) \) Simplify each difference (3 points each) \( \left(2 p^{2}-2 p^{3}-5\right)+\left(2 p^{2}-2 p^{3}+3\right) \) 17) \( \left(7 p^{2}+6 p\right)-\left(3 p^{2}+2 p\right) \) Find each product \( (3 \) points each \( ) \) 19) \( (3 v-4)\left(4 v^{2}-2 v+1\right) \) \( 21)(x-1)(2 x-3)(x+3) \) 18) \( \left(x+7-7 x^{2}\right)-\left(3+x+x^{2}\right) \) 20) \( (6 n-7)\left(8 n^{2}+8 n-3\right) \)

Ask by Cook Reese. in the United States
Feb 03,2025

Real Tutor Solution

Tutor-Verified Answer

Answer

**15. Simplificación de la suma:** \[ (2 + n) + (5 + 6n² + 2n) = 6n² + 3n + 7 \] **16. Simplificación de la suma:** \[ (2p² - 2p³ - 5) + (2p² - 2p³ + 3) = -4p³ + 4p² - 2 \] **17. Simplificación de la diferencia:** \[ (7p² + 6p) - (3p² + 2p) = 4p² + 4p \] **18. Simplificación de la diferencia:** \[ (x + 7 - 7x²) - (3 + x + x²) = -8x² + 4 \] **19. Producto:** \[ (3v - 4)(4v² - 2v + 1) = 12v³ - 22v² + 11v - 4 \] **20. Producto:** \[ (6n - 7)(8n² + 8n - 3) = 48n³ - 8n² - 74n + 21 \] **21. Producto:** \[ (x - 1)(2x - 3)(x + 3) = 2x³ + x² - 12x + 9 \]

Solution

Aquí están las simplificaciones solicitadas: **15. Simplificar la suma:** \[ (2 + n) + (5 + 6n² + 2n) = 6n² + 3n + 7 \] **16. Simplificar la suma:** \[ (2p² - 2p³ - 5) + (2p² - 2p³ + 3) = -4p³ + 4p² - 2 \] **17. Simplificar la diferencia:** \[ (7p² + 6p) - (3p² + 2p) = 4p² + 4p \] **18. Simplificar la diferencia:** \[ (x + 7 - 7x²) - (3 + x + x²) = -8x² + 4 \] **19. Encontrar el producto:** \[ (3v - 4)(4v² - 2v + 1) = 12v³ - 22v² + 11v - 4 \] **20. Encontrar el producto:** \[ (6n - 7)(8n² + 8n - 3) = 48n³ - 8n² - 74n + 21 \] **21. Encontrar el producto:** \[ (x - 1)(2x - 3)(x + 3) = 2x³ + x² - 12x + 9 \]

Reviewed and approved by the UpStudy tutoring team

error msg
Explain
Simplify this solution

Extra Insights

To simplify the first expression, combine like terms: \((2 + n) + (5 + 6n^2 + 2n) = (2 + 5) + (n + 2n) + 6n^2 = 7 + 3n + 6n^2\). For the difference, you can add the two terms as they have the same structure: \((2p^2 - 2p^3 - 5) + (2p^2 - 2p^3 + 3) = (2p^2 + 2p^2) + (-2p^3 - 2p^3) + (-5 + 3) = 4p^2 - 4p^3 - 2\). Now for another difference, distribute and simplify: \((7p^2 + 6p) - (3p^2 + 2p) = (7p^2 - 3p^2) + (6p - 2p) = 4p^2 + 4p\). For the product: \((3v - 4)(4v^2 - 2v + 1)\) can be expanded using the distributive property: \(3v(4v^2) - 3v(2v) + 3v(1) - 4(4v^2) + 4(2v) - 4(1) = 12v^3 - 6v^2 + 3v - 16v^2 + 8v - 4 = 12v^3 - 22v^2 + 11v - 4\). Let's multiply the last product: \((6n - 7)(8n^2 + 8n - 3)\) gives: \(6n(8n^2) + 6n(8n) + 6n(-3) - 7(8n^2) - 7(8n) + 7(3) = 48n^3 + 48n^2 - 18n - 56n^2 - 56n + 21\), simplifying to \(48n^3 - 8n^2 - 74n + 21\).

Try Premium now!
Try Premium and ask Thoth AI unlimited math questions now!
Maybe later Go Premium
Study can be a real struggle
Why not UpStudy it?
Select your plan below
Premium

You can enjoy

Start now
  • Step-by-step explanations
  • 24/7 expert live tutors
  • Unlimited number of questions
  • No interruptions
  • Full access to Answer and Solution
  • Full Access to PDF Chat, UpStudy Chat, Browsing Chat
Basic

Totally free but limited

  • Limited Solution
Welcome to UpStudy!
Please sign in to continue the Thoth AI Chat journey
Continue with Email
Or continue with
By clicking “Sign in”, you agree to our Terms of Use & Privacy Policy