Question
upstudy study bank question image url

Exercises What are the solutions for each equation? Use the Quadratic Formula. \( \begin{array}{ll}\text { 1. }-x^{2}+7 x-3=0 & \text { 2. } x^{2}+6 x=10\end{array} \)

Ask by Weston Weber. in the United States
Jan 24,2025

Real Tutor Solution

Tutor-Verified Answer

Answer

The solutions are: 1. For \(-x^2 + 7x - 3 = 0\): \[ x = \frac{7 + \sqrt{37}}{2} \quad \text{and} \quad x = \frac{7 - \sqrt{37}}{2} \] 2. For \(x^2 + 6x = 10\): \[ x = -3 + \sqrt{19} \quad \text{and} \quad x = -3 - \sqrt{19} \]

Solution

To solve each quadratic equation using the **Quadratic Formula**, we'll follow these steps: The **Quadratic Formula** is given by: \[ x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \] where \( a \), \( b \), and \( c \) are coefficients from the quadratic equation \( ax^2 + bx + c = 0 \). --- ### **1. Solving \(-x^2 + 7x - 3 = 0\)** First, identify the coefficients: \[ a = -1,\quad b = 7,\quad c = -3 \] **Step 1: Calculate the Discriminant (\( \Delta \))** \[ \Delta = b^2 - 4ac = 7^2 - 4(-1)(-3) = 49 - 12 = 37 \] **Step 2: Apply the Quadratic Formula** \[ x = \frac{-b \pm \sqrt{\Delta}}{2a} = \frac{-7 \pm \sqrt{37}}{2(-1)} = \frac{-7 \pm \sqrt{37}}{-2} \] **Step 3: Simplify the Expression** Multiply numerator and denominator by \(-1\) to make the denominator positive: \[ x = \frac{7 \mp \sqrt{37}}{2} \] **Solutions:** \[ x = \frac{7 + \sqrt{37}}{2} \quad \text{and} \quad x = \frac{7 - \sqrt{37}}{2} \] --- ### **2. Solving \(x^2 + 6x = 10\)** First, rewrite the equation in standard form: \[ x^2 + 6x - 10 = 0 \] Identify the coefficients: \[ a = 1,\quad b = 6,\quad c = -10 \] **Step 1: Calculate the Discriminant (\( \Delta \))** \[ \Delta = b^2 - 4ac = 6^2 - 4(1)(-10) = 36 + 40 = 76 \] **Step 2: Apply the Quadratic Formula** \[ x = \frac{-b \pm \sqrt{\Delta}}{2a} = \frac{-6 \pm \sqrt{76}}{2(1)} = \frac{-6 \pm \sqrt{76}}{2} \] **Step 3: Simplify the Square Root** \[ \sqrt{76} = \sqrt{4 \times 19} = 2\sqrt{19} \] **Step 4: Substitute Back into the Formula** \[ x = \frac{-6 \pm 2\sqrt{19}}{2} \] **Step 5: Simplify the Fraction** \[ x = \frac{-6}{2} \pm \frac{2\sqrt{19}}{2} = -3 \pm \sqrt{19} \] **Solutions:** \[ x = -3 + \sqrt{19} \quad \text{and} \quad x = -3 - \sqrt{19} \] --- ### **Summary of Solutions** 1. **For \(-x^2 + 7x - 3 = 0\):** \[ x = \frac{7 + \sqrt{37}}{2} \quad \text{and} \quad x = \frac{7 - \sqrt{37}}{2} \] 2. **For \(x^2 + 6x = 10\):** \[ x = -3 + \sqrt{19} \quad \text{and} \quad x = -3 - \sqrt{19} \] These are the exact solutions. If you need decimal approximations: - \(\sqrt{37} \approx 6.08276\), so: \[ x \approx \frac{7 + 6.08276}{2} \approx 6.54138 \quad \text{and} \quad x \approx \frac{7 - 6.08276}{2} \approx 0.45862 \] - \(\sqrt{19} \approx 4.3589\), so: \[ x \approx -3 + 4.3589 \approx 1.3589 \quad \text{and} \quad x \approx -3 - 4.3589 \approx -7.3589 \]

Reviewed and approved by the UpStudy tutoring team

error msg
Explain
Simplify this solution

The Deep Dive

To solve the first equation, \(-x^{2}+7x-3=0\), we first rewrite it in the standard form: \(x^{2}-7x+3=0\). Using the Quadratic Formula \(x = \frac{-b \pm \sqrt{b^{2}-4ac}}{2a}\), where \(a = 1\), \(b = -7\), and \(c = 3\), we find the solutions are \(x = \frac{7 \pm \sqrt{49 - 12}}{2} = \frac{7 \pm \sqrt{37}}{2}\). For the second equation, \(x^{2}+6x=10\), we rearrange it to the standard form: \(x^{2}+6x-10=0\). Again applying the Quadratic Formula with \(a = 1\), \(b = 6\), and \(c = -10\), we find: \(x = \frac{-6 \pm \sqrt{36 + 40}}{2} = \frac{-6 \pm \sqrt{76}}{2} = -3 \pm \sqrt{19}\).

Try Premium now!
Try Premium and ask Thoth AI unlimited math questions now!
Maybe later Go Premium
Study can be a real struggle
Why not UpStudy it?
Select your plan below
Premium

You can enjoy

Start now
  • Step-by-step explanations
  • 24/7 expert live tutors
  • Unlimited number of questions
  • No interruptions
  • Full access to Answer and Solution
  • Full Access to PDF Chat, UpStudy Chat, Browsing Chat
Basic

Totally free but limited

  • Limited Solution
Welcome to UpStudy!
Please sign in to continue the Thoth AI Chat journey
Continue with Email
Or continue with
By clicking “Sign in”, you agree to our Terms of Use & Privacy Policy