Responder
The solutions are:
1. For \(-x^2 + 7x - 3 = 0\):
\[
x = \frac{7 + \sqrt{37}}{2} \quad \text{and} \quad x = \frac{7 - \sqrt{37}}{2}
\]
2. For \(x^2 + 6x = 10\):
\[
x = -3 + \sqrt{19} \quad \text{and} \quad x = -3 - \sqrt{19}
\]
Solución
To solve each quadratic equation using the **Quadratic Formula**, we'll follow these steps:
The **Quadratic Formula** is given by:
\[
x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}
\]
where \( a \), \( b \), and \( c \) are coefficients from the quadratic equation \( ax^2 + bx + c = 0 \).
---
### **1. Solving \(-x^2 + 7x - 3 = 0\)**
First, identify the coefficients:
\[
a = -1,\quad b = 7,\quad c = -3
\]
**Step 1: Calculate the Discriminant (\( \Delta \))**
\[
\Delta = b^2 - 4ac = 7^2 - 4(-1)(-3) = 49 - 12 = 37
\]
**Step 2: Apply the Quadratic Formula**
\[
x = \frac{-b \pm \sqrt{\Delta}}{2a} = \frac{-7 \pm \sqrt{37}}{2(-1)} = \frac{-7 \pm \sqrt{37}}{-2}
\]
**Step 3: Simplify the Expression**
Multiply numerator and denominator by \(-1\) to make the denominator positive:
\[
x = \frac{7 \mp \sqrt{37}}{2}
\]
**Solutions:**
\[
x = \frac{7 + \sqrt{37}}{2} \quad \text{and} \quad x = \frac{7 - \sqrt{37}}{2}
\]
---
### **2. Solving \(x^2 + 6x = 10\)**
First, rewrite the equation in standard form:
\[
x^2 + 6x - 10 = 0
\]
Identify the coefficients:
\[
a = 1,\quad b = 6,\quad c = -10
\]
**Step 1: Calculate the Discriminant (\( \Delta \))**
\[
\Delta = b^2 - 4ac = 6^2 - 4(1)(-10) = 36 + 40 = 76
\]
**Step 2: Apply the Quadratic Formula**
\[
x = \frac{-b \pm \sqrt{\Delta}}{2a} = \frac{-6 \pm \sqrt{76}}{2(1)} = \frac{-6 \pm \sqrt{76}}{2}
\]
**Step 3: Simplify the Square Root**
\[
\sqrt{76} = \sqrt{4 \times 19} = 2\sqrt{19}
\]
**Step 4: Substitute Back into the Formula**
\[
x = \frac{-6 \pm 2\sqrt{19}}{2}
\]
**Step 5: Simplify the Fraction**
\[
x = \frac{-6}{2} \pm \frac{2\sqrt{19}}{2} = -3 \pm \sqrt{19}
\]
**Solutions:**
\[
x = -3 + \sqrt{19} \quad \text{and} \quad x = -3 - \sqrt{19}
\]
---
### **Summary of Solutions**
1. **For \(-x^2 + 7x - 3 = 0\):**
\[
x = \frac{7 + \sqrt{37}}{2} \quad \text{and} \quad x = \frac{7 - \sqrt{37}}{2}
\]
2. **For \(x^2 + 6x = 10\):**
\[
x = -3 + \sqrt{19} \quad \text{and} \quad x = -3 - \sqrt{19}
\]
These are the exact solutions. If you need decimal approximations:
- \(\sqrt{37} \approx 6.08276\), so:
\[
x \approx \frac{7 + 6.08276}{2} \approx 6.54138 \quad \text{and} \quad x \approx \frac{7 - 6.08276}{2} \approx 0.45862
\]
- \(\sqrt{19} \approx 4.3589\), so:
\[
x \approx -3 + 4.3589 \approx 1.3589 \quad \text{and} \quad x \approx -3 - 4.3589 \approx -7.3589
\]
Revisado y aprobado por el equipo de tutoría de UpStudy
Explicar
Simplifique esta solución