Question
Convert the angle measure \( 46^{\circ} 27^{\prime} 36^{\prime \prime} \) to decimal degrees. \( 46^{\circ} 27^{\prime} 36^{\prime \prime}=\square^{\circ} \) (Type an integer or decimal rounded to the nearest thousandth as needed.)
Ask by Carroll Cole. in the United States
Feb 03,2025
Real Tutor Solution
Tutor-Verified Answer
Answer
\(46.460^{\circ}\)
Solution
To convert the angle measure \( 46^{\circ} 27^{\prime} 36^{\prime \prime} \) to decimal degrees, you can use the following formula:
\[
\text{Decimal Degrees} = \text{Degrees} + \left(\frac{\text{Minutes}}{60}\right) + \left(\frac{\text{Seconds}}{3600}\right)
\]
Plugging in the values:
\[
\text{Decimal Degrees} = 46 + \left(\frac{27}{60}\right) + \left(\frac{36}{3600}\right)
\]
Calculate each part:
\[
\frac{27}{60} = 0.45
\]
\[
\frac{36}{3600} = 0.01
\]
Now, add them together:
\[
46 + 0.45 + 0.01 = 46.46
\]
To express this to the nearest thousandth:
\[
46.46 \text{ becomes } 46.460^{\circ}
\]
**Answer:**
\(46.460^{\circ}\)
Reviewed and approved by the UpStudy tutoring team
Like
error msg
Explain
Simplify this solution
The Deep Dive
To convert the angle \( 46^{\circ} 27^{\prime} 36^{\prime \prime} \) to decimal degrees, follow these steps: 1. **Convert minutes to degrees:** - \( 27^{\prime} = \frac{27}{60} = 0.45^{\circ} \) 2. **Convert seconds to degrees:** - \( 36^{\prime \prime} = \frac{36}{3600} = 0.01^{\circ} \) 3. **Add all parts together:** - \( 46^{\circ} + 0.45^{\circ} + 0.01^{\circ} = 46.460^{\circ} \) Thus, \( 46^{\circ} 27^{\prime} 36^{\prime \prime} = 46.460^{\circ} \). So, the answer is \( \boxed{46.460} \).