Question
upstudy study bank question image url

Part 5 of 5 Points: 0 of 1 Find the exact value of each of the remaining trigonometric functions of \( \theta \). Rationalize denominators when applicable. \( \cot \theta=-\frac{\sqrt{3}}{7} \), given that \( \theta \) is in quadrant II B. The function is undefined. Select the correct choice below and, if necessary, fill in the answer box to complete your choice. A. \( \boldsymbol{\operatorname { t a n }} \theta=-\frac{7 \sqrt{3}}{3} \) (Simplify your answer, including any radicals. Use integers or fractions for any numbers in the expression.) B. The function is undefined. Select the correct choice below and, if necessary, fill in the answer box to complete your choice. A. \( \csc \theta=\frac{2 \sqrt{13}}{7} \) (Simplify your answer, including any radicals. Use integers or fractions for any numbers in the expression.) B. The function is undefined. Select the correct choice below and, if necessary, fill in the answer box to complete your choice. A. \( \sec \theta= \) \( \square \) (Simplify your answer, including any radicals. Use integers or fractions for any numbers in the expression.) B. The function is undefined. View an example Get more help -

Ask by Carrillo Beck. in the United States
Feb 03,2025

Real Tutor Solution

Tutor-Verified Answer

Answer

\( \tan \theta = -\frac{7\sqrt{3}}{3} \), \( \csc \theta = \frac{2\sqrt{13}}{7} \), \( \sec \theta = -\frac{2\sqrt{39}}{3} \)

Solution

To find the exact values of the remaining trigonometric functions of \( \theta \) given that \( \cot \theta = -\frac{\sqrt{3}}{7} \) and \( \theta \) is in **Quadrant II**, we'll follow these steps: 1. **Determine the Signs in Quadrant II:** - **Sine (\( \sin \theta \))**: Positive - **Cosine (\( \cos \theta \))**: Negative - **Tangent (\( \tan \theta \))**: Negative - **Cosecant (\( \csc \theta \))**: Positive - **Secant (\( \sec \theta \))**: Negative - **Cotangent (\( \cot \theta \))**: Negative (Given) 2. **Use the Definition of Cotangent:** \[ \cot \theta = \frac{\text{Adjacent}}{\text{Opposite}} = -\frac{\sqrt{3}}{7} \] - **Adjacent Side**: \( -\sqrt{3} \) (negative in Quadrant II) - **Opposite Side**: \( 7 \) (positive in Quadrant II) 3. **Find the Hypotenuse Using the Pythagorean Theorem:** \[ \text{Hypotenuse} = \sqrt{(\text{Adjacent})^2 + (\text{Opposite})^2} = \sqrt{(-\sqrt{3})^2 + 7^2} = \sqrt{3 + 49} = \sqrt{52} = 2\sqrt{13} \] 4. **Calculate the Remaining Trigonometric Functions:** - **Sine (\( \sin \theta \)):** \[ \sin \theta = \frac{\text{Opposite}}{\text{Hypotenuse}} = \frac{7}{2\sqrt{13}} = \frac{7\sqrt{13}}{26} \] - **Cosine (\( \cos \theta \)):** \[ \cos \theta = \frac{\text{Adjacent}}{\text{Hypotenuse}} = \frac{-\sqrt{3}}{2\sqrt{13}} = \frac{-\sqrt{39}}{26} \] - **Tangent (\( \tan \theta \)):** \[ \tan \theta = \frac{\text{Opposite}}{\text{Adjacent}} = \frac{7}{-\sqrt{3}} = -\frac{7\sqrt{3}}{3} \] - **Cosecant (\( \csc \theta \)):** \[ \csc \theta = \frac{1}{\sin \theta} = \frac{2\sqrt{13}}{7} \] - **Secant (\( \sec \theta \)):** \[ \sec \theta = \frac{1}{\cos \theta} = \frac{1}{-\frac{\sqrt{39}}{26}} = -\frac{26}{\sqrt{39}} = -\frac{2\sqrt{39}}{3} \] - **Cotangent (\( \cot \theta \)):** \[ \cot \theta = -\frac{\sqrt{3}}{7} \quad \text{(Given)} \] 5. **Summary of All Trigonometric Functions:** \[ \begin{aligned} \sin \theta &= \frac{7\sqrt{13}}{26} \\ \cos \theta &= \frac{-\sqrt{39}}{26} \\ \tan \theta &= -\frac{7\sqrt{3}}{3} \\ \csc \theta &= \frac{2\sqrt{13}}{7} \\ \sec \theta &= -\frac{2\sqrt{39}}{3} \\ \cot \theta &= -\frac{\sqrt{3}}{7} \quad \text{(Given)} \end{aligned} \] 6. **Addressing the Multiple Choice Options:** - **For \( \tan \theta \):** - **A.** \( \tan \theta = -\frac{7 \sqrt{3}}{3} \) **✔️ Correct** - **B.** The function is undefined. ❌ Incorrect - **For \( \csc \theta \):** - **A.** \( \csc \theta = \frac{2 \sqrt{13}}{7} \) **✔️ Correct** - **B.** The function is undefined. ❌ Incorrect - **For \( \sec \theta \):** - **A.** \( \sec \theta = -\frac{2\sqrt{39}}{3} \) - **B.** The function is undefined. **Choose A** and fill in the answer: \[ \sec \theta = -\frac{2\sqrt{39}}{3} \] Ensure that all radicals are simplified and denominators are rationalized as shown above.

Reviewed and approved by the UpStudy tutoring team

error msg
Explain
Simplify this solution

Bonus Knowledge

To find the remaining trigonometric functions based on \( \cot \theta = -\frac{\sqrt{3}}{7} \) in quadrant II, we start with the definition of cotangent. Since \( \cot \theta = \frac{\cos \theta}{\sin \theta} \), we can set \( \cos \theta = -\sqrt{3} \) and \( \sin \theta = 7 \) (but we need to adjust these values into a valid triangle using the Pythagorean identity). Using the identity \( \sin^2 \theta + \cos^2 \theta = 1 \), we find: 1. Calculate the hypotenuse: \[ r = \sqrt{(-\sqrt{3})^2 + 7^2} = \sqrt{3 + 49} = \sqrt{52} = 2\sqrt{13}. \] 2. Then, we can determine: \[ \sin \theta = \frac{7}{2\sqrt{13}}, \quad \cos \theta = -\frac{\sqrt{3}}{2\sqrt{13}}. \] 3. Finally, we calculate: \[ \tan \theta = \frac{\sin \theta}{\cos \theta} = -\frac{7}{\sqrt{3}} \rightarrow \tan \theta = -\frac{7 \sqrt{3}}{3} \] (after rationalizing the denominator), \[ \csc \theta = \frac{1}{\sin \theta} = \frac{2\sqrt{13}}{7}, \quad \sec \theta = \frac{1}{\cos \theta} = -\frac{2\sqrt{13}}{\sqrt{3}} = -\frac{2\sqrt{39}}{3} \] (after rationalizing the denominator). So, the answers are: 1. For \( \tan \theta \), the choice is A: \( \tan \theta = -\frac{7 \sqrt{3}}{3} \). 2. For \( \csc \theta \), the choice is A: \( \csc \theta = \frac{2\sqrt{13}}{7} \). 3. For \( \sec \theta \), the choice is A: \( \sec \theta = -\frac{2\sqrt{39}}{3} \).

Try Premium now!
Try Premium and ask Thoth AI unlimited math questions now!
Maybe later Go Premium
Study can be a real struggle
Why not UpStudy it?
Select your plan below
Premium

You can enjoy

Start now
  • Step-by-step explanations
  • 24/7 expert live tutors
  • Unlimited number of questions
  • No interruptions
  • Full access to Answer and Solution
  • Full Access to PDF Chat, UpStudy Chat, Browsing Chat
Basic

Totally free but limited

  • Limited Solution
Welcome to UpStudy!
Please sign in to continue the Thoth AI Chat journey
Continue with Email
Or continue with
By clicking “Sign in”, you agree to our Terms of Use & Privacy Policy