Evaluate the function at the given values of the independent variable and simplify. \( f(x)=\frac{5 x^{2}-1}{x^{2}} \) \( \begin{array}{lll}\text { (a) } f(5) & \text { (b) } f(-5) & \text { (c) } f(-x)\end{array} \)
Real Tutor Solution
Answer
Solution
Sign in to Unlock Answers for Free!
A Learning Platform Trusted by Millions of Real Students and Teachers.
Reviewed and approved by the UpStudy tutoring team
The Deep Dive
To evaluate the function \( f(x) = \frac{5x^{2}-1}{x^{2}} \) at the given values: (a) \( f(5) = \frac{5(5^{2}) - 1}{5^{2}} = \frac{5(25) - 1}{25} = \frac{125 - 1}{25} = \frac{124}{25} \) (b) \( f(-5) = \frac{5((-5)^{2}) - 1}{(-5)^{2}} = \frac{5(25) - 1}{25} = \frac{125 - 1}{25} = \frac{124}{25} \) (c) \( f(-x) = \frac{5(-x)^{2} - 1}{(-x)^{2}} = \frac{5(x^{2}) - 1}{x^{2}} = \frac{5x^{2} - 1}{x^{2}} = f(x) \) So: (a) \( f(5) = \frac{124}{25} \) (b) \( f(-5) = \frac{124}{25} \) (c) \( f(-x) = f(x) \)