Question
upstudy study bank question image url

Factoviser \( (x+4)^{2}-16 \)

Ask by Logan Rogers. in Mauritania
Dec 30,2024

Real Tutor Solution

Tutor-Verified Answer

Answer

\( (x + 4)^2 - 16 = x(x + 8) \)

Solution

Pour factoriser l'expression \( (x + 4)^2 - 16 \), suivez les étapes suivantes : 1. **Reconnaître une différence de carrés** : L'expression peut être réécrite comme une différence de deux carrés : \[ (x + 4)^2 - 4^2 \] 2. **Appliquer la formule de la différence de carrés** : La formule générale pour la différence de carrés est : \[ a^2 - b^2 = (a - b)(a + b) \] En appliquant cette formule à notre expression : \[ (x + 4)^2 - 4^2 = (x + 4 - 4)(x + 4 + 4) \] 3. **Simplifier les termes** : \[ (x + 4 - 4) = x \] \[ (x + 4 + 4) = x + 8 \] 4. **Écrire la factorisation finale** : \[ (x + 4)^2 - 16 = x(x + 8) \] **Résultat :** \[ (x + 4)^2 - 16 = x(x + 8) \]

Reviewed and approved by the UpStudy tutoring team

error msg
Explain
Simplify this solution

The Deep Dive

Let's first simplify the expression \( (x+4)^{2}-16 \). This is a difference of squares, which can be expressed as \( (a^2 - b^2) = (a-b)(a+b) \). Here, \( a = (x+4) \) and \( b = 4 \) (since \( 16 = 4^2 \)). So we rewrite it as: \[ (x+4 - 4)(x+4 + 4) = (x)(x+8) = x(x+8). \] Now the expression is factored as \( x(x + 8) \). Factoring is a powerful tool in algebra that simplifies expressions and solves equations more easily. Using this factorization, we can find the roots of the equation by setting it equal to zero: \( x(x + 8) = 0 \), leading to solutions of \( x = 0 \) and \( x = -8 \). This highlights how factoring helps in solving quadratic equations efficiently!

Try Premium now!
Try Premium and ask Thoth AI unlimited math questions now!
Maybe later Go Premium
Study can be a real struggle
Why not UpStudy it?
Select your plan below
Premium

You can enjoy

Start now
  • Step-by-step explanations
  • 24/7 expert live tutors
  • Unlimited number of questions
  • No interruptions
  • Full access to Answer and Solution
  • Full Access to PDF Chat, UpStudy Chat, Browsing Chat
Basic

Totally free but limited

  • Limited Solution
Welcome to UpStudy!
Please sign in to continue the Thoth AI Chat journey
Continue with Email
Or continue with
By clicking “Sign in”, you agree to our Terms of Use & Privacy Policy