Question
upstudy study bank question image url

the value of one trigonometric function of an acute angle 3 , find the volues of the ramaining five trigonometric functions of . Gue the eract answar as a olfied fraction, if necessary, Rationalice denominators if necescary. \[ \cos 5=\frac{\sqrt{5}}{5} \]

Ask by Powers Willis. in the United States
Jan 22,2025

Real Tutor Solution

Tutor-Verified Answer

Answer

\[ \begin{aligned} \sin \theta &= \frac{2\sqrt{5}}{5} \\ \cos \theta &= \frac{\sqrt{5}}{5} \\ \tan \theta &= 2 \\ \cot \theta &= \frac{1}{2} \\ \sec \theta &= \sqrt{5} \\ \csc \theta &= \frac{\sqrt{5}}{2} \\ \end{aligned} \]

Solution

Given that \(\cos \theta = \frac{\sqrt{5}}{5}\) for an acute angle \(\theta\), we can find the remaining five trigonometric functions as follows: 1. **Sine (\(\sin \theta\))**: \[ \sin \theta = \sqrt{1 - \cos^2 \theta} = \sqrt{1 - \left(\frac{\sqrt{5}}{5}\right)^2} = \sqrt{1 - \frac{5}{25}} = \sqrt{\frac{20}{25}} = \frac{2\sqrt{5}}{5} \] 2. **Tangent (\(\tan \theta\))**: \[ \tan \theta = \frac{\sin \theta}{\cos \theta} = \frac{\frac{2\sqrt{5}}{5}}{\frac{\sqrt{5}}{5}} = 2 \] 3. **Cotangent (\(\cot \theta\))**: \[ \cot \theta = \frac{1}{\tan \theta} = \frac{1}{2} \] 4. **Secant (\(\sec \theta\))**: \[ \sec \theta = \frac{1}{\cos \theta} = \frac{1}{\frac{\sqrt{5}}{5}} = \frac{5}{\sqrt{5}} = \sqrt{5} \] 5. **Cosecant (\(\csc \theta\))**: \[ \csc \theta = \frac{1}{\sin \theta} = \frac{1}{\frac{2\sqrt{5}}{5}} = \frac{5}{2\sqrt{5}} = \frac{\sqrt{5}}{2} \] **Summary of All Six Trigonometric Functions:** \[ \begin{aligned} \sin \theta &= \frac{2\sqrt{5}}{5} \\ \cos \theta &= \frac{\sqrt{5}}{5} \\ \tan \theta &= 2 \\ \cot \theta &= \frac{1}{2} \\ \sec \theta &= \sqrt{5} \\ \csc \theta &= \frac{\sqrt{5}}{2} \\ \end{aligned} \]

Reviewed and approved by the UpStudy tutoring team

error msg
Explain
Simplify this solution

The Deep Dive

To find the values of the remaining five trigonometric functions, we start with the given cosine value, \( \cos 5 = \frac{\sqrt{5}}{5} \). From the Pythagorean identity, we know that \( \sin^2 \theta + \cos^2 \theta = 1 \). Plugging in the cosine value: \[ \sin^2 5 + \left(\frac{\sqrt{5}}{5}\right)^2 = 1 \Rightarrow \sin^2 5 + \frac{5}{25} = 1 \Rightarrow \sin^2 5 + \frac{1}{5} = 1 \] Solving for \( \sin^2 5 \): \[ \sin^2 5 = 1 - \frac{1}{5} = \frac{4}{5} \Rightarrow \sin 5 = \frac{2\sqrt{5}}{5} \] Now, for the remaining functions, we can find: - \( \tan 5 = \frac{\sin 5}{\cos 5} = \frac{\frac{2\sqrt{5}}{5}}{\frac{\sqrt{5}}{5}} = 2 \) - \( \csc 5 = \frac{1}{\sin 5} = \frac{5}{2\sqrt{5}} = \frac{\sqrt{5}}{2} \) (after rationalizing the denominator) - \( \sec 5 = \frac{1}{\cos 5} = \frac{5}{\sqrt{5}} = \sqrt{5} \) (after rationalizing the denominator) - \( \cot 5 = \frac{1}{\tan 5} = \frac{1}{2} \) Thus, the remaining values are: \[ \sin 5 = \frac{2\sqrt{5}}{5}, \quad \tan 5 = 2, \quad \csc 5 = \frac{\sqrt{5}}{2}, \quad \sec 5 = \sqrt{5}, \quad \cot 5 = \frac{1}{2}. \]

Try Premium now!
Try Premium and ask Thoth AI unlimited math questions now!
Maybe later Go Premium
Study can be a real struggle
Why not UpStudy it?
Select your plan below
Premium

You can enjoy

Start now
  • Step-by-step explanations
  • 24/7 expert live tutors
  • Unlimited number of questions
  • No interruptions
  • Full access to Answer and Solution
  • Full Access to PDF Chat, UpStudy Chat, Browsing Chat
Basic

Totally free but limited

  • Limited Solution
Welcome to UpStudy!
Please sign in to continue the Thoth AI Chat journey
Continue with Email
Or continue with
By clicking “Sign in”, you agree to our Terms of Use & Privacy Policy