the value of one trigonometric function of an acute angle 3 , find the volues of the ramaining five trigonometric functions of . Gue the eract answar as a olfied fraction, if necessary, Rationalice denominators if necescary. \[ \cos 5=\frac{\sqrt{5}}{5} \]
Real Tutor Solution
Answer
Solution
Reviewed and approved by the UpStudy tutoring team
The Deep Dive
To find the values of the remaining five trigonometric functions, we start with the given cosine value, \( \cos 5 = \frac{\sqrt{5}}{5} \). From the Pythagorean identity, we know that \( \sin^2 \theta + \cos^2 \theta = 1 \). Plugging in the cosine value: \[ \sin^2 5 + \left(\frac{\sqrt{5}}{5}\right)^2 = 1 \Rightarrow \sin^2 5 + \frac{5}{25} = 1 \Rightarrow \sin^2 5 + \frac{1}{5} = 1 \] Solving for \( \sin^2 5 \): \[ \sin^2 5 = 1 - \frac{1}{5} = \frac{4}{5} \Rightarrow \sin 5 = \frac{2\sqrt{5}}{5} \] Now, for the remaining functions, we can find: - \( \tan 5 = \frac{\sin 5}{\cos 5} = \frac{\frac{2\sqrt{5}}{5}}{\frac{\sqrt{5}}{5}} = 2 \) - \( \csc 5 = \frac{1}{\sin 5} = \frac{5}{2\sqrt{5}} = \frac{\sqrt{5}}{2} \) (after rationalizing the denominator) - \( \sec 5 = \frac{1}{\cos 5} = \frac{5}{\sqrt{5}} = \sqrt{5} \) (after rationalizing the denominator) - \( \cot 5 = \frac{1}{\tan 5} = \frac{1}{2} \) Thus, the remaining values are: \[ \sin 5 = \frac{2\sqrt{5}}{5}, \quad \tan 5 = 2, \quad \csc 5 = \frac{\sqrt{5}}{2}, \quad \sec 5 = \sqrt{5}, \quad \cot 5 = \frac{1}{2}. \]