Question
upstudy study bank question image url

12. \( \lim _{x \rightarrow 8} \frac{x-8}{\sqrt[3]{x}-2}, \mathrm{R}: 12 \)

Ask by Lewis Schwartz. in Angola
Feb 03,2025

Real Tutor Solution

Tutor-Verified Answer

Answer

O limite é 12.

Solution

Para calcular o limite \[ \lim _{x \rightarrow 8} \frac{x-8}{\sqrt[3]{x}-2}, \] seguimos os seguintes passos: 1. **Identificação da Indeterminação:** Substituindo \( x = 8 \) diretamente na expressão, obtemos: \[ \frac{8 - 8}{\sqrt[3]{8} - 2} = \frac{0}{2 - 2} = \frac{0}{0}, \] o que é uma forma indeterminada \( \frac{0}{0} \). 2. **Aplicação da Regra de L’Hôpital:** A Regra de L’Hôpital permite calcular o limite de uma forma indeterminada \( \frac{0}{0} \) derivando o numerador e o denominador separadamente. - Derivada do numerador \( f(x) = x - 8 \): \[ f'(x) = 1. \] - Derivada do denominador \( g(x) = \sqrt[3]{x} - 2 \): \[ g'(x) = \frac{1}{3} x^{-2/3} = \frac{1}{3} \cdot \frac{1}{x^{2/3}}. \] Portanto, o limite se transforma em: \[ \lim _{x \rightarrow 8} \frac{f'(x)}{g'(x)} = \lim _{x \rightarrow 8} \frac{1}{\frac{1}{3} x^{-2/3}} = \lim _{x \rightarrow 8} 3 x^{2/3}. \] 3. **Cálculo do Limite Simplificado:** Substituindo \( x = 8 \) na expressão simplificada: \[ 3 \cdot 8^{2/3} = 3 \cdot \left(2^3\right)^{2/3} = 3 \cdot 2^{2} = 3 \cdot 4 = 12. \] Portanto, \[ \lim _{x \rightarrow 8} \frac{x-8}{\sqrt[3]{x}-2} = 12. \]

Reviewed and approved by the UpStudy tutoring team

error msg
Explain
Simplify this solution

Beyond the Answer

To evaluate the limit \( \lim _{x \rightarrow 8} \frac{x-8}{\sqrt[3]{x}-2} \), we first notice that substituting \( x = 8 \) directly leads to a \(\frac{0}{0}\) indeterminate form. To simplify, we can factor the numerator and denominator. We recognize that \( x-8 = (\sqrt[3]{x}-2)(\sqrt[3]{x^2} + 2\sqrt[3]{x} + 4) \) due to the difference of cubes. Hence, we can rewrite the limit as: \[ \lim _{x \rightarrow 8} \frac{(\sqrt[3]{x}-2)(\sqrt[3]{x^2} + 2\sqrt[3]{x} + 4)}{\sqrt[3]{x}-2} \] Cancelling out the \(\sqrt[3]{x}-2\) (valid since we’re approaching 8, not equaling), we have: \[ \lim _{x \rightarrow 8} \left( \sqrt[3]{x^2} + 2\sqrt[3]{x} + 4 \right) \] Now, substituting \( x = 8 \): \[ \sqrt[3]{8^2} + 2\sqrt[3]{8} + 4 = 4 + 4 + 4 = 12 \] Thus, the limit evaluates to \( 12 \).

Related Questions

Latest Calculus Questions

Try Premium now!
Try Premium and ask Thoth AI unlimited math questions now!
Maybe later Go Premium
Study can be a real struggle
Why not UpStudy it?
Select your plan below
Premium

You can enjoy

Start now
  • Step-by-step explanations
  • 24/7 expert live tutors
  • Unlimited number of questions
  • No interruptions
  • Full access to Answer and Solution
  • Full Access to PDF Chat, UpStudy Chat, Browsing Chat
Basic

Totally free but limited

  • Limited Solution
Welcome to UpStudy!
Please sign in to continue the Thoth AI Chat journey
Continue with Email
Or continue with
By clicking “Sign in”, you agree to our Terms of Use & Privacy Policy