12. \( \lim _{x \rightarrow 8} \frac{x-8}{\sqrt[3]{x}-2}, \mathrm{R}: 12 \)
Real Tutor Solution
Answer
Solution
Reviewed and approved by the UpStudy tutoring team
Beyond the Answer
To evaluate the limit \( \lim _{x \rightarrow 8} \frac{x-8}{\sqrt[3]{x}-2} \), we first notice that substituting \( x = 8 \) directly leads to a \(\frac{0}{0}\) indeterminate form. To simplify, we can factor the numerator and denominator. We recognize that \( x-8 = (\sqrt[3]{x}-2)(\sqrt[3]{x^2} + 2\sqrt[3]{x} + 4) \) due to the difference of cubes. Hence, we can rewrite the limit as: \[ \lim _{x \rightarrow 8} \frac{(\sqrt[3]{x}-2)(\sqrt[3]{x^2} + 2\sqrt[3]{x} + 4)}{\sqrt[3]{x}-2} \] Cancelling out the \(\sqrt[3]{x}-2\) (valid since we’re approaching 8, not equaling), we have: \[ \lim _{x \rightarrow 8} \left( \sqrt[3]{x^2} + 2\sqrt[3]{x} + 4 \right) \] Now, substituting \( x = 8 \): \[ \sqrt[3]{8^2} + 2\sqrt[3]{8} + 4 = 4 + 4 + 4 = 12 \] Thus, the limit evaluates to \( 12 \).