Question
upstudy study bank question image url

\( \int _ { 0 } ^ { \infty } 1 / ( e ^ { x } - 1 ) d x \)

Ask by Owen Johnston. in Colombia
Feb 03,2025

Real Tutor Solution

Tutor-Verified Answer

Answer

La integral \( \int_{0}^{\infty} \frac{1}{e^{x} - 1} \, dx \) no converge; es decir, no tiene un valor finito.

Solution

La integral que has planteado es: \[ \int_{0}^{\infty} \frac{1}{e^{x} - 1} \, dx \] Para evaluar esta integral, consideremos el comportamiento de la función integrando en los límites de integración: 1. **Cuando \( x \) se aproxima a 0:** Para valores pequeños de \( x \), podemos aproximar \( e^{x} \) mediante su expansión en serie de Taylor: \[ e^{x} \approx 1 + x + \frac{x^{2}}{2} + \dots \] Por lo tanto: \[ e^{x} - 1 \approx x \quad \Rightarrow \quad \frac{1}{e^{x} - 1} \approx \frac{1}{x} \] La integral cerca de 0 se comporta como \( \int \frac{1}{x} \, dx \), que es logarítmica y, por lo tanto, tiende a infinito cuando \( x \) se aproxima a 0. 2. **Cuando \( x \) tiende a infinito:** Para valores grandes de \( x \), \( e^{x} \) crece muy rápidamente, por lo que: \[ \frac{1}{e^{x} - 1} \approx e^{-x} \] La integral \( \int e^{-x} \, dx \) converge y tiende a cero cuando \( x \) se aproxima a infinito. **Conclusión:** El comportamiento de la integral está dominado por el comportamiento cercano a \( x = 0 \), donde la función integrando tiende a infinito de forma no integrable. Por lo tanto, la integral original diverge. \[ \int_{0}^{\infty} \frac{1}{e^{x} - 1} \, dx \quad \text{es divergente.} \]

Reviewed and approved by the UpStudy tutoring team

error msg
Explain
Simplify this solution

Beyond the Answer

The integral \( \int_{0}^{\infty} \frac{1}{e^{x} - 1} \, dx \) is closely related to the calculation of the Riemann zeta function, particularly at even integers. This integral can be evaluated using the series expansion of the integrand or through residues in complex analysis. In short, this integral evaluates to \( \frac{\pi^2}{6} \). Moreover, this integral shows up frequently in physics, particularly in the study of thermodynamics and quantum mechanics. It's associated with the calculation of the Stefan-Boltzmann law, which describes how the energy radiated by a black body scales with temperature. So not only is this integral mathematically fascinating, it has real-world implications in understanding how objects emit radiation!

Related Questions

Latest Calculus Questions

Try Premium now!
Try Premium and ask Thoth AI unlimited math questions now!
Maybe later Go Premium
Study can be a real struggle
Why not UpStudy it?
Select your plan below
Premium

You can enjoy

Start now
  • Step-by-step explanations
  • 24/7 expert live tutors
  • Unlimited number of questions
  • No interruptions
  • Full access to Answer and Solution
  • Full Access to PDF Chat, UpStudy Chat, Browsing Chat
Basic

Totally free but limited

  • Limited Solution
Welcome to UpStudy!
Please sign in to continue the Thoth AI Chat journey
Continue with Email
Or continue with
By clicking “Sign in”, you agree to our Terms of Use & Privacy Policy