Simplify. \( \sqrt{125}+\sqrt{28}-8 \sqrt{5} \) \( [?] \sqrt{\square}-\square \sqrt{\square} \)
Real Tutor Solution
Answer
Solution
Sign in to Unlock Answers for Free!
A Learning Platform Trusted by Millions of Real Students and Teachers.
Reviewed and approved by the UpStudy tutoring team
Mind Expander
Sure! Let’s simplify \( \sqrt{125} + \sqrt{28} - 8\sqrt{5} \). First, we simplify \( \sqrt{125} \): \[ \sqrt{125} = \sqrt{25 \cdot 5} = \sqrt{25} \cdot \sqrt{5} = 5\sqrt{5} \] Next, simplify \( \sqrt{28} \): \[ \sqrt{28} = \sqrt{4 \cdot 7} = \sqrt{4} \cdot \sqrt{7} = 2\sqrt{7} \] Now we can substitute these back into the original expression: \[ 5\sqrt{5} + 2\sqrt{7} - 8\sqrt{5} \] Now, we combine the like terms involving \(\sqrt{5}\): \[ (5 - 8)\sqrt{5} + 2\sqrt{7} = -3\sqrt{5} + 2\sqrt{7} \] Thus, the expression simplifies to: \[ 2\sqrt{7} - 3\sqrt{5} \] So, the final answer is: \[ 2\sqrt{7} - 3\sqrt{5} \] where \( [2] \sqrt{7} - [3] \sqrt{5} \).