Which functions are equivalent to \( f(x)=\sqrt[2]{162^{x}} \) ? Check all that apply. \( f(x)=162^{\frac{x}{4}} \) \( f(x)=(3 \sqrt[3]{2})^{x} \) \( f(x)=9 \sqrt[4]{2^{x}} \) \( f(x)=162^{\frac{4}{x}} \) \( f(x)=\left[3\left(2^{\frac{1}{4}}\right)\right]^{x} \)
Real Tutor Solution
Answer
Solution
Reviewed and approved by the UpStudy tutoring team
Bonus Knowledge
To find functions equivalent to \( f(x) = \sqrt[2]{162^x} \), we can rewrite it as follows: 1. The square root can be expressed as an exponent: \[ f(x) = (162^x)^{1/2} = 162^{\frac{x}{2}} \] 2. Now we can check each option to see if it simplifies to \( 162^{\frac{x}{2}} \). - **Option 1:** \( f(x)=162^{\frac{x}{4}} \) - Not equivalent. - **Option 2:** \( f(x)=(3 \sqrt[3]{2})^{x} \) - Not equivalent upon simplification. - **Option 3:** \( f(x)=9 \sqrt[4]{2^{x}} \) - Not equivalent as well. - **Option 4:** \( f(x)=162^{\frac{4}{x}} \) - Not equivalent. - **Option 5:** \( f(x)=\left[3\left(2^{\frac{1}{4}}\right)\right]^{x} \) - Not equivalent, because it doesn't yield the same base. Unfortunately, none of the provided functions are equivalent to \( f(x) = \sqrt[2]{162^x} \).