Question
upstudy study bank question image url

Use the information given about the angle \( \theta, \cot \theta=-8, \sec \theta<0,0 \leq \theta<2 \pi \), to find the exact values of the following. (a) \( \sin (2 \theta) \), (b) \( \cos (2 \theta) \), (c) \( \sin \frac{\theta}{2} \), and (d) \( \cos \frac{\theta}{2} \) (a) \( \sin (2 \theta)=-\frac{16}{65} \) (Type an exact answer, using radicals as needed.) (b) \( \cos (2 \theta)=\square \) (Type an exact answer, using radicals as needed.)

Ask by Burton Coleman. in the United States
Jan 23,2025

Real Tutor Solution

Tutor-Verified Answer

Answer

\( \cos(2\theta) = \frac{63}{65} \)

Solution

To find the exact value of \( \cos(2\theta) \) given the information: - \( \cot \theta = -8 \) - \( \sec \theta < 0 \) - \( 0 \leq \theta < 2\pi \) ### Step 1: Determine \( \sin \theta \) and \( \cos \theta \) Given \( \cot \theta = \frac{\cos \theta}{\sin \theta} = -8 \), we can express: \[ \cos \theta = -8 \sin \theta \] Using the Pythagorean identity: \[ \sin^2 \theta + \cos^2 \theta = 1 \\ \sin^2 \theta + (-8 \sin \theta)^2 = 1 \\ \sin^2 \theta + 64 \sin^2 \theta = 1 \\ 65 \sin^2 \theta = 1 \\ \sin \theta = \pm \frac{1}{\sqrt{65}} \] Since \( \sec \theta < 0 \) implies \( \cos \theta < 0 \), and from \( \cos \theta = -8 \sin \theta \), it follows that: \[ \sin \theta = \frac{1}{\sqrt{65}}, \quad \cos \theta = -\frac{8}{\sqrt{65}} \] (This places \( \theta \) in the second quadrant where sine is positive and cosine is negative.) ### Step 2: Calculate \( \cos(2\theta) \) Using the double-angle identity: \[ \cos(2\theta) = \cos^2 \theta - \sin^2 \theta \] Substitute the values of \( \sin \theta \) and \( \cos \theta \): \[ \cos(2\theta) = \left(-\frac{8}{\sqrt{65}}\right)^2 - \left(\frac{1}{\sqrt{65}}\right)^2 \\ = \frac{64}{65} - \frac{1}{65} \\ = \frac{63}{65} \] ### Final Answer **(b)** \[ \cos(2\theta) = \frac{63}{65} \]

Reviewed and approved by the UpStudy tutoring team

error msg
Explain
Simplify this solution

The Deep Dive

To find the exact values of the trigonometric functions based on the given conditions, let's start with analyzing the information provided. Given \( \cot \theta = -8 \), we know that the tangent function is negative, indicating that \( \theta \) is in the second quadrant since \( \sec \theta < 0 \) (the cosine is also negative in this quadrant). From \( \cot \theta = \frac{\cos \theta}{\sin \theta} = -8 \), we can express this in terms of sine and cosine. We can assign values based on a right triangle: - Let \( \cos \theta = -8k \) and \( \sin \theta = k \) for some \( k > 0 \). - Then, using the Pythagorean identity, we find \( (-8k)^2 + (k)^2 = 1 \), which simplifies to: \[ 64k^2 + k^2 = 1 \implies 65k^2 = 1 \implies k^2 = \frac{1}{65} \implies k = \frac{1}{\sqrt{65}} \] Thus: \[ \sin \theta = \frac{1}{\sqrt{65}}, \quad \cos \theta = -\frac{8}{\sqrt{65}} \] Next, we can calculate the double angle identities. **(a)** To find \( \sin(2\theta) \): \[ \sin(2\theta) = 2 \sin \theta \cos \theta = 2 \left(\frac{1}{\sqrt{65}}\right) \left(-\frac{8}{\sqrt{65}}\right) = -\frac{16}{65} \] **(b)** To find \( \cos(2\theta) \): \[ \cos(2\theta) = \cos^2 \theta - \sin^2 \theta \] First, calculate \( \cos^2 \theta \) and \( \sin^2 \theta \): \[ \cos^2 \theta = \left(-\frac{8}{\sqrt{65}}\right)^2 = \frac{64}{65} \] \[ \sin^2 \theta = \left(\frac{1}{\sqrt{65}}\right)^2 = \frac{1}{65} \] Now, substituting these into \( \cos(2\theta) \): \[ \cos(2\theta) = \frac{64}{65} - \frac{1}{65} = \frac{63}{65} \] Thus, the exact values are: (a) \( \sin(2\theta) = -\frac{16}{65} \) (b) \( \cos(2\theta) = \frac{63}{65} \) For parts (c) and (d), we can use the half-angle formulas: **(c)** Finding \( \sin \frac{\theta}{2} \): \[ \sin \frac{\theta}{2} = \sqrt{\frac{1 - \cos \theta}{2}} = \sqrt{\frac{1 - \left(-\frac{8}{\sqrt{65}}\right)}{2}} = \sqrt{\frac{1 + \frac{8}{\sqrt{65}}}{2}} = \sqrt{\frac{\frac{65 + 8\sqrt{65}}{65}}{2}} = \frac{\sqrt{65 + 8\sqrt{65}}}{\sqrt{130}} \] **(d)** Finding \( \cos \frac{\theta}{2} \): \[ \cos \frac{\theta}{2} = \sqrt{\frac{1 + \cos \theta}{2}} = \sqrt{\frac{1 - \frac{8}{\sqrt{65}}}{2}} = \sqrt{\frac{\frac{65 - 8\sqrt{65}}{65}}{2}} = \frac{\sqrt{65 - 8\sqrt{65}}}{\sqrt{130}} \] Now we have the required values: - \( \sin(2 \theta) = -\frac{16}{65} \) - \( \cos(2 \theta) = \frac{63}{65} \)

Try Premium now!
Try Premium and ask Thoth AI unlimited math questions now!
Maybe later Go Premium
Study can be a real struggle
Why not UpStudy it?
Select your plan below
Premium

You can enjoy

Start now
  • Step-by-step explanations
  • 24/7 expert live tutors
  • Unlimited number of questions
  • No interruptions
  • Full access to Answer and Solution
  • Full Access to PDF Chat, UpStudy Chat, Browsing Chat
Basic

Totally free but limited

  • Limited Solution
Welcome to UpStudy!
Please sign in to continue the Thoth AI Chat journey
Continue with Email
Or continue with
By clicking “Sign in”, you agree to our Terms of Use & Privacy Policy