Question
upstudy study bank question image url

Given: (i) \( A=60^{\circ} \) and \( B=30^{\circ} \) (ii) \( A=110^{\circ} \) and \( B=50^{\circ} \) (iti) \( A=225^{\circ} \) and \( B=135^{\circ} \) Use a calculator to evaluate each of the following (a) \( \cos (A-B) \) (b) \( \cos A-\cos B \) (c) \( \cos A \cos B+\sin A \sin B \)

Ask by Mccoy Sherman. in South Africa
Feb 03,2025

Real Tutor Solution

Tutor-Verified Answer

Answer

Here are the results for each case: 1. **Case (i):** \( A = 60^{\circ} \), \( B = 30^{\circ} \) - \( \cos(A - B) = 0.8660 \) - \( \cos A - \cos B = -0.3660 \) - \( \cos A \cos B + \sin A \sin B = 0.8660 \) 2. **Case (ii):** \( A = 110^{\circ} \), \( B = 50^{\circ} \) - \( \cos(A - B) = 0.5000 \) - \( \cos A - \cos B = -0.9848 \) - \( \cos A \cos B + \sin A \sin B = 0.5000 \) 3. **Case (iii):** \( A = 225^{\circ} \), \( B = 135^{\circ} \) - \( \cos(A - B) = 0.0000 \) - \( \cos A - \cos B = 0.0000 \) - \( \cos A \cos B + \sin A \sin B = 0.0000 \) These calculations confirm the trigonometric identities for each set of angles.

Solution

Certainly! Let's evaluate each expression for the given sets of angles using a calculator. We'll provide decimal approximations rounded to four decimal places. ### Given Angle Sets: 1. **Case (i):** \( A = 60^{\circ} \), \( B = 30^{\circ} \) 2. **Case (ii):** \( A = 110^{\circ} \), \( B = 50^{\circ} \) 3. **Case (iii):** \( A = 225^{\circ} \), \( B = 135^{\circ} \) ### Evaluations: | **Case** | **(a) \( \cos(A - B) \)** | **(b) \( \cos A - \cos B \)** | **(c) \( \cos A \cos B + \sin A \sin B \)** | |----------|----------------------------|---------------------------------|-----------------------------------------------| | **(i) \( A = 60^{\circ} \), \( B = 30^{\circ} \)** | | Calculation | \( \cos(60^{\circ} - 30^{\circ}) = \cos(30^{\circ}) \) | \( \cos(60^{\circ}) - \cos(30^{\circ}) \) | \( \cos(60^{\circ}) \cos(30^{\circ}) + \sin(60^{\circ}) \sin(30^{\circ}) \) | | Value | \( \cos(30^{\circ}) \approx 0.8660 \) | \( 0.5000 - 0.8660 = -0.3660 \) | \( (0.5000)(0.8660) + (0.8660)(0.5000) = 0.8660 \) | | **(ii) \( A = 110^{\circ} \), \( B = 50^{\circ} \)** | | Calculation | \( \cos(110^{\circ} - 50^{\circ}) = \cos(60^{\circ}) \) | \( \cos(110^{\circ}) - \cos(50^{\circ}) \) | \( \cos(110^{\circ}) \cos(50^{\circ}) + \sin(110^{\circ}) \sin(50^{\circ}) \) | | Value | \( \cos(60^{\circ}) = 0.5000 \) | \( \cos(110^{\circ}) \approx -0.3420 \), \( \cos(50^{\circ}) \approx 0.6428 \)
\( -0.3420 - 0.6428 = -0.9848 \) | \( (-0.3420)(0.6428) + (0.9397)(0.7660) \approx -0.2195 + 0.7203 = 0.5008 \approx 0.5000 \) | | **(iii) \( A = 225^{\circ} \), \( B = 135^{\circ} \)** | | Calculation | \( \cos(225^{\circ} - 135^{\circ}) = \cos(90^{\circ}) \) | \( \cos(225^{\circ}) - \cos(135^{\circ}) \) | \( \cos(225^{\circ}) \cos(135^{\circ}) + \sin(225^{\circ}) \sin(135^{\circ}) \) | | Value | \( \cos(90^{\circ}) = 0.0000 \) | \( \cos(225^{\circ}) \approx -0.7071 \), \( \cos(135^{\circ}) \approx -0.7071 \)
\( -0.7071 - (-0.7071) = 0.0000 \) | \( (-0.7071)(-0.7071) + (-0.7071)(0.7071) = 0.5000 - 0.5000 = 0.0000 \) | ### Summary of Results: | **Case** | **(a) \( \cos(A - B) \)** | **(b) \( \cos A - \cos B \)** | **(c) \( \cos A \cos B + \sin A \sin B \)** | |----------|----------------------------|---------------------------------|-----------------------------------------------| | **(i)** | 0.8660 | -0.3660 | 0.8660 | | **(ii)** | 0.5000 | -0.9848 | 0.5000 | | **(iii)** | 0.0000 | 0.0000 | 0.0000 | ### Observations: - **Part (a)** and **Part (c)** yield the same results for each case. This is consistent with the trigonometric identity: \[ \cos(A - B) = \cos A \cos B + \sin A \sin B \] - **Part (b)** provides a different relationship, calculating the difference between the cosines of angles \( A \) and \( B \). Feel free to reach out if you need further explanations or additional assistance!

Reviewed and approved by the UpStudy tutoring team

error msg
Explain
Simplify this solution

Mind Expander

To evaluate the expressions with the given angles, let's work through each pair of angles step by step: ### For \( A = 60^{\circ} \) and \( B = 30^{\circ} \): 1. **(a)** \( \cos (A-B) = \cos(60^{\circ} - 30^{\circ}) = \cos(30^{\circ}) = \frac{\sqrt{3}}{2} \approx 0.866 \) 2. **(b)** \( \cos A - \cos B = \cos(60^{\circ}) - \cos(30^{\circ}) = \frac{1}{2} - \frac{\sqrt{3}}{2} \approx -0.366 \) 3. **(c)** \( \cos A \cos B + \sin A \sin B = \cos(60^{\circ}) \cos(30^{\circ}) + \sin(60^{\circ}) \sin(30^{\circ}) \) = \( \frac{1}{2} \cdot \frac{\sqrt{3}}{2} + \frac{\sqrt{3}}{2} \cdot \frac{1}{2} = \frac{\sqrt{3}}{4} + \frac{\sqrt{3}}{4} = \frac{\sqrt{3}}{2} \approx 0.866 \) ### For \( A = 110^{\circ} \) and \( B = 50^{\circ} \): 1. **(a)** \( \cos (A-B) = \cos(110^{\circ} - 50^{\circ}) = \cos(60^{\circ}) = \frac{1}{2} = 0.5 \) 2. **(b)** \( \cos A - \cos B = \cos(110^{\circ}) - \cos(50^{\circ}) \approx -0.342 - 0.643 \approx -0.985 \) 3. **(c)** \( \cos A \cos B + \sin A \sin B \) = \( \cos(110^{\circ}) \cos(50^{\circ}) + \sin(110^{\circ}) \sin(50^{\circ}) \) = \( (-0.342)(0.643) + (0.940)(0.766) \approx -0.220 + 0.719 = 0.499 \approx 0.5 \) ### For \( A = 225^{\circ} \) and \( B = 135^{\circ} \): 1. **(a)** \( \cos (A-B) = \cos(225^{\circ} - 135^{\circ}) = \cos(90^{\circ}) = 0 \) 2. **(b)** \( \cos A - \cos B = \cos(225^{\circ}) - \cos(135^{\circ}) = -\frac{\sqrt{2}}{2} - (-\frac{\sqrt{2}}{2}) = 0 \) 3. **(c)** \( \cos A \cos B + \sin A \sin B \) = \( \cos(225^{\circ}) \cos(135^{\circ}) + \sin(225^{\circ}) \sin(135^{\circ}) \) = \( (-\frac{\sqrt{2}}{2})(-\frac{\sqrt{2}}{2}) + (-\frac{\sqrt{2}}{2})(\frac{\sqrt{2}}{2}) = \frac{1}{2} - \frac{1}{2} = 0 \) ### Summary of Results: - For \( A = 60^\circ \), \( B = 30^\circ \): - (a) \( \frac{\sqrt{3}}{2} \approx 0.866 \) - (b) \( \frac{1}{2} - \frac{\sqrt{3}}{2} \approx -0.366 \) - (c) \( \frac{\sqrt{3}}{2} \approx 0.866 \) - For \( A = 110^\circ \), \( B = 50^\circ \): - (a) \( 0.5 \) - (b) \( -0.985 \) - (c) \( 0.5 \) - For \( A = 225^\circ \), \( B = 135^\circ \): - (a) \( 0 \) - (b) \( 0 \)

Try Premium now!
Try Premium and ask Thoth AI unlimited math questions now!
Maybe later Go Premium
Study can be a real struggle
Why not UpStudy it?
Select your plan below
Premium

You can enjoy

Start now
  • Step-by-step explanations
  • 24/7 expert live tutors
  • Unlimited number of questions
  • No interruptions
  • Full access to Answer and Solution
  • Full Access to PDF Chat, UpStudy Chat, Browsing Chat
Basic

Totally free but limited

  • Limited Solution
Welcome to UpStudy!
Please sign in to continue the Thoth AI Chat journey
Continue with Email
Or continue with
By clicking “Sign in”, you agree to our Terms of Use & Privacy Policy