Question
upstudy study bank question image url

\( \begin{array}{ll}\text { c) } 2^{2 x}-2.2^{x}+1=0 & \text { d) } 2^{2 x+2}-5.2^{x}+1=0 \\ \text { e) } 2^{2 x+1}-2^{x}=0 & \text { f) } 2^{2 x}=2^{2}\left(2^{x}+8\right) \\ \text { g) } 9^{x+1}-10.3^{x}+1=0 & \text { h) } 4^{x}+2^{x}=2^{3+x}+2^{3}\end{array} \)

Ask by Cruz Johnson. in the United Kingdom
Feb 03,2025

Real Tutor Solution

Tutor-Verified Answer

Answer

**Solutions:** - **c)** \( x = 0 \) - **d)** \( x = 0 \) and \( x = -2 \) - **e)** \( x = -1 \) - **f)** \( x = 3 \) - **g)** \( x = 0 \) and \( x = -2 \) - **h)** \( x = 3 \)

Solution

Sure, let's solve each of the given exponential equations step by step. --- ### **Problem c)** \[ 2^{2x} - 2 \cdot 2^{x} + 1 = 0 \] **Solution:** 1. **Substitution:** Let \( y = 2^x \). Then \( 2^{2x} = y^2 \). 2. **Rewrite the equation:** \[ y^2 - 2y + 1 = 0 \] 3. **Factor the quadratic:** \[ (y - 1)^2 = 0 \] 4. **Solve for \( y \):** \[ y = 1 \] 5. **Back-substitute \( y = 2^x \):** \[ 2^x = 1 \] 6. **Solve for \( x \):** \[ x = 0 \] **Answer:** \( x = 0 \) --- ### **Problem d)** \[ 2^{2x+2} - 5 \cdot 2^{x} + 1 = 0 \] **Solution:** 1. **Simplify \( 2^{2x+2} \):** \[ 2^{2x+2} = 4 \cdot 2^{2x} \] 2. **Substitution:** Let \( y = 2^x \). Then \( 2^{2x} = y^2 \). 3. **Rewrite the equation:** \[ 4y^2 - 5y + 1 = 0 \] 4. **Solve the quadratic equation:** \[ y = \frac{5 \pm \sqrt{25 - 16}}{8} = \frac{5 \pm 3}{8} \] - \( y = \frac{8}{8} = 1 \) - \( y = \frac{2}{8} = \frac{1}{4} \) 5. **Back-substitute \( y = 2^x \):** - For \( y = 1 \): \( 2^x = 1 \) ⇒ \( x = 0 \) - For \( y = \frac{1}{4} \): \( 2^x = 2^{-2} \) ⇒ \( x = -2 \) **Answer:** \( x = 0 \) and \( x = -2 \) --- ### **Problem e)** \[ 2^{2x+1} - 2^{x} = 0 \] **Solution:** 1. **Factor out \( 2^x \):** \[ 2^x (2^{x+1} - 1) = 0 \] - \( 2^x \) is never zero, so set the second factor to zero: 2. **Set \( 2^{x+1} - 1 = 0 \):** \[ 2^{x+1} = 1 \] 3. **Solve for \( x \):** \[ x + 1 = 0 \] ⇒ \( x = -1 \) **Answer:** \( x = -1 \) --- ### **Problem f)** \[ 2^{2x} = 2^2 (2^{x} + 8) \] **Solution:** 1. **Simplify the right-hand side:** \[ 2^2 (2^x + 8) = 4 \cdot 2^x + 32 \] 2. **Substitution:** Let \( y = 2^x \). Then \( 2^{2x} = y^2 \). 3. **Rewrite the equation:** \[ y^2 = 4y + 32 \] 4. **Rearrange to form a quadratic:** \[ y^2 - 4y - 32 = 0 \] 5. **Solve the quadratic equation:** \[ y = \frac{4 \pm \sqrt{16 + 128}}{2} = \frac{4 \pm \sqrt{144}}{2} = \frac{4 \pm 12}{2} \] - \( y = \frac{16}{2} = 8 \) (valid since \( y > 0 \)) - \( y = \frac{-8}{2} = -4 \) (invalid) 6. **Back-substitute \( y = 2^x \):** \[ 2^x = 8 \] ⇒ \( x = 3 \) **Answer:** \( x = 3 \) --- ### **Problem g)** \[ 9^{x+1} - 10 \cdot 3^{x} + 1 = 0 \] **Solution:** 1. **Express \( 9^{x+1} \) in terms of base 3:** \[ 9^{x+1} = 3^{2(x+1)} = 3^{2x + 2} = 9 \cdot 3^{2x} \] 2. **Substitution:** Let \( y = 3^x \). Then \( 3^{2x} = y^2 \). 3. **Rewrite the equation:** \[ 9y^2 - 10y + 1 = 0 \] 4. **Solve the quadratic equation:** \[ y = \frac{10 \pm \sqrt{100 - 36}}{18} = \frac{10 \pm 8}{18} \] - \( y = \frac{18}{18} = 1 \) - \( y = \frac{2}{18} = \frac{1}{9} \) 5. **Back-substitute \( y = 3^x \):** - For \( y = 1 \): \( 3^x = 1 \) ⇒ \( x = 0 \) - For \( y = \frac{1}{9} \): \( 3^x = 3^{-2} \) ⇒ \( x = -2 \) **Answer:** \( x = 0 \) and \( x = -2 \) --- ### **Problem h)** \[ 4^{x} + 2^{x} = 2^{3+x} + 2^{3} \] **Solution:** 1. **Express all terms in base 2:** \[ 4^x = (2^2)^x = 2^{2x} \] \[ 2^{3+x} = 2^x \cdot 2^3 = 8 \cdot 2^x \] \[ 2^3 = 8 \] 2. **Rewrite the equation:** \[ 2^{2x} + 2^x = 8 \cdot 2^x + 8 \] 3. **Substitution:** Let \( y = 2^x \). Then \( 2^{2x} = y^2 \). 4. **Rewrite the equation:** \[ y^2 + y = 8y + 8 \] 5. **Rearrange to form a quadratic:** \[ y^2 - 7y - 8 = 0 \] 6. **Solve the quadratic equation:** \[ y = \frac{7 \pm \sqrt{49 + 32}}{2} = \frac{7 \pm \sqrt{81}}{2} = \frac{7 \pm 9}{2} \] - \( y = \frac{16}{2} = 8 \) (valid) - \( y = \frac{-2}{2} = -1 \) (invalid) 7. **Back-substitute \( y = 2^x \):** \[ 2^x = 8 \] ⇒ \( x = 3 \) **Answer:** \( x = 3 \) --- **Summary of Solutions:** - **c)** \( x = 0 \) - **d)** \( x = 0 \) and \( x = -2 \) - **e)** \( x = -1 \) - **f)** \( x = 3 \) - **g)** \( x = 0 \) and \( x = -2 \) - **h)** \( x = 3 \)

Reviewed and approved by the UpStudy tutoring team

error msg
Explain
Simplify this solution

Mind Expander

For equation \(2^{2x} - 2 \cdot 2^{x} + 1 = 0\), it can be rewritten as a quadratic form by substituting \(y = 2^{x}\). You’ll find \(y^2 - 2y + 1 = 0\) simplifies to \((y-1)^2 = 0\), revealing a double root at \(y = 1\) or \(x = 0\). For the expression \(9^{x+1} - 10 \cdot 3^{x} + 1 = 0\), by letting \(z = 3^x\), the equation reformulates to \(9z - 10z + 1 = 0\), which simplifies to \(9 - 10 + 1 = 0\). This means we are led to a rational framework, allowing us to unearth \(z = 1\), thus \(3^x = 1\) gives \(x = 0\).

Try Premium now!
Try Premium and ask Thoth AI unlimited math questions now!
Maybe later Go Premium
Study can be a real struggle
Why not UpStudy it?
Select your plan below
Premium

You can enjoy

Start now
  • Step-by-step explanations
  • 24/7 expert live tutors
  • Unlimited number of questions
  • No interruptions
  • Full access to Answer and Solution
  • Full Access to PDF Chat, UpStudy Chat, Browsing Chat
Basic

Totally free but limited

  • Limited Solution
Welcome to UpStudy!
Please sign in to continue the Thoth AI Chat journey
Continue with Email
Or continue with
By clicking “Sign in”, you agree to our Terms of Use & Privacy Policy