Question
1. d) \( \frac{1}{2} \) of \( 50+24 \div(7-3) \) 1. e) \( 6+\frac{1}{2} \) of \( 30 \div(9-7) \)
Ask by Campbell Mitchell. in South Africa
Jan 23,2025
Real Tutor Solution
Tutor-Verified Answer
Answer
- **1.d)** 28
- **1.e)** 13.5
Solution
Let's evaluate each expression step-by-step.
---
### 1. d) \( \frac{1}{2} \) of \( 50 + \frac{24}{7-3} \)
**Step 1: Simplify inside the parentheses**
\[
7 - 3 = 4
\]
**Step 2: Perform the division**
\[
\frac{24}{4} = 6
\]
**Step 3: Add to 50**
\[
50 + 6 = 56
\]
**Step 4: Take half of the result**
\[
\frac{1}{2} \times 56 = 28
\]
**Answer for part d:** \( 28 \)
---
### 1. e) \( 6 + \frac{1}{2} \) of \( \frac{30}{9-7} \)
**Step 1: Simplify inside the parentheses**
\[
9 - 7 = 2
\]
**Step 2: Perform the division**
\[
\frac{30}{2} = 15
\]
**Step 3: Take half of the result**
\[
\frac{1}{2} \times 15 = 7.5
\]
**Step 4: Add to 6**
\[
6 + 7.5 = 13.5
\]
**Answer for part e:** \( 13.5 \)
---
**Final Answers:**
- **1.d)** \( 28 \)
- **1.e)** \( 13.5 \)
Reviewed and approved by the UpStudy tutoring team
Like
error msg
Explain
Simplify this solution
Extra Insights
To solve \( \frac{1}{2} \) of \( 50 + 24 \div (7-3) \), first, calculate inside the parentheses: \( 7 - 3 = 4 \). Then, calculate \( 24 \div 4 = 6 \). Now, add \( 50 + 6 = 56 \). Finally, half of this number is \( \frac{1}{2} \times 56 = 28 \). Now for \( 6 + \frac{1}{2} \) of \( 30 \div (9-7) \): first, simplify the parentheses: \( 9 - 7 = 2 \). Then, calculate \( 30 \div 2 = 15 \). Now, find half of this: \( \frac{1}{2} \times 15 = 7.5 \). Finally, add this to 6, resulting in \( 6 + 7.5 = 13.5 \).