Question
upstudy study bank question image url

Question Solve the following system of equations using an inverse matrix. You must also indicate the inverse matrix, \( A^{-1} \), that was used to solve the system. You may optionally write the inverse matrix with a scalar coefficient. \[ \begin{array}{r}-x-6 y=8 \\ -3 x-10 y=6\end{array} \]

Ask by Bartlett Howell. in the United States
Feb 04,2025

Real Tutor Solution

Tutor-Verified Answer

Answer

To solve the system of equations using an inverse matrix, we first write the system in matrix form: \[ A = \begin{pmatrix} -1 & -6 \\ -3 & -10 \end{pmatrix}, \quad X = \begin{pmatrix} x \\ y \end{pmatrix}, \quad B = \begin{pmatrix} 8 \\ 6 \end{pmatrix} \] Next, we find the inverse of matrix \(A\): \[ A^{-1} = \begin{pmatrix} \frac{5}{4} & -\frac{3}{4} \\ -\frac{3}{8} & \frac{1}{8} \end{pmatrix} \] Using \(A^{-1}\), we solve for \(X\): \[ X = A^{-1}B = \begin{pmatrix} 5.5 \\ -2.25 \end{pmatrix} \] So, the solution is \(x = 5.5\) and \(y = -2.25\).

Solution

Sign in to Unlock Answers for Free!

A Learning Platform Trusted by Millions of Real Students and Teachers.

star-icon Unlock

Reviewed and approved by the UpStudy tutoring team

Extra Insights

To solve the system of equations using an inverse matrix approach, we first need to express it in the form \(AX = B\). The given equations can be rewritten as: \[ \begin{bmatrix} -1 & -6 \\ -3 & -10 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} 8 \\ 6 \end{bmatrix} \] Here, \(A = \begin{bmatrix} -1 & -6 \\ -3 & -10 \end{bmatrix}\) and \(B = \begin{bmatrix} 8 \\ 6 \end{bmatrix}\). Now, let's find the inverse of matrix \(A\), denoted as \(A^{-1}\). The inverse of a \(2 \times 2\) matrix \(\begin{bmatrix} a & b \\ c & d \end{bmatrix}\) is given by \(\frac{1}{ad-bc} \begin{bmatrix} d & -b \\ -c & a \end{bmatrix}\). Calculating the determinant \(ad - bc\): \[ (-1)(-10) - (-6)(-3) = 10 - 18 = -8 \] Thus, the inverse of \(A\) is: \[ A^{-1} = \frac{1}{-8} \begin{bmatrix} -10 & 6 \\ 3 & -1 \end{bmatrix} = \begin{bmatrix} \frac{10}{8} & -\frac{6}{8} \\ -\frac{3}{8} & \frac{1}{8} \end{bmatrix} = \begin{bmatrix} \frac{5}{4} & -\frac{3}{4} \\ -\frac{3}{8} & \frac{1}{8} \end{bmatrix} \] Now, multiplying both sides of \(AX = B\) by \(A^{-1}\): \[ X = A^{-1}B \] Calculating: \[ X = \begin{bmatrix} \frac{5}{4} & -\frac{3}{4} \\ -\frac{3}{8} & \frac{1}{8} \end{bmatrix} \begin{bmatrix} 8 \\ 6 \end{bmatrix} = \begin{bmatrix} \frac{5}{4} \cdot 8 - \frac{3}{4} \cdot 6 \\ -\frac{3}{8} \cdot 8 + \frac{1}{8} \cdot 6 \end{bmatrix} \] Calculating the first entry: \[ \frac{5}{4} \cdot 8 - \frac{3}{4} \cdot 6 = 10 - 4.5 = 5.5 \] Calculating the second entry: \[ -\frac{3}{8} \cdot 8 + \frac{1}{8} \cdot 6 = -3 + \frac{3}{4} = -2.25 \] Thus, the solution to the system of equations is: \[ X = \begin{bmatrix} 5.5 \\ -2.25 \end{bmatrix} \] And the inverse matrix used is \[ A^{-1} = \begin{bmatrix} \frac{5}{4} & -\frac{3}{4} \\ -\frac{3}{8} & \frac{1}{8} \end{bmatrix}. \]

Latest Algebra Questions

Try Premium now!
Try Premium and ask Thoth AI unlimited math questions now!
Maybe later Go Premium
Study can be a real struggle
Why not UpStudy it?
Select your plan below
Premium

You can enjoy

Start now
  • Step-by-step explanations
  • 24/7 expert live tutors
  • Unlimited number of questions
  • No interruptions
  • Full access to Answer and Solution
  • Full Access to PDF Chat, UpStudy Chat, Browsing Chat
Basic

Totally free but limited

  • Limited Solution
Welcome to UpStudy!
Please sign in to continue the Thoth AI Chat journey
Continue with Email
Or continue with
By clicking “Sign in”, you agree to our Terms of Use & Privacy Policy