Pregunta
upstudy study bank question image url

Question Solve the following system of equations using an inverse matrix. You must also indicate the inverse matrix, \( A^{-1} \), that was used to solve the system. You may optionally write the inverse matrix with a scalar coefficient. \[ \begin{array}{r}-x-6 y=8 \\ -3 x-10 y=6\end{array} \]

Ask by Bartlett Howell. in the United States
Feb 04,2025

Solución de tutoría real

Respuesta verificada por el tutor

Responder

To solve the system of equations using an inverse matrix, we first write the system in matrix form: \[ A = \begin{pmatrix} -1 & -6 \\ -3 & -10 \end{pmatrix}, \quad X = \begin{pmatrix} x \\ y \end{pmatrix}, \quad B = \begin{pmatrix} 8 \\ 6 \end{pmatrix} \] Next, we find the inverse of matrix \(A\): \[ A^{-1} = \begin{pmatrix} \frac{5}{4} & -\frac{3}{4} \\ -\frac{3}{8} & \frac{1}{8} \end{pmatrix} \] Using \(A^{-1}\), we solve for \(X\): \[ X = A^{-1}B = \begin{pmatrix} 5.5 \\ -2.25 \end{pmatrix} \] So, the solution is \(x = 5.5\) and \(y = -2.25\).

Solución

To solve the system of equations using an inverse matrix, we first need to express the system in matrix form. The given equations are: 1. \(-x - 6y = 8\) 2. \(-3x - 10y = 6\) We can rewrite this system in the form \(AX = B\), where: \[ A = \begin{pmatrix} -1 & -6 \\ -3 & -10 \end{pmatrix}, \quad X = \begin{pmatrix} x \\ y \end{pmatrix}, \quad B = \begin{pmatrix} 8 \\ 6 \end{pmatrix} \] Next, we need to find the inverse of matrix \(A\), denoted as \(A^{-1}\). The formula for the inverse of a 2x2 matrix \[ \begin{pmatrix} a & b \\ c & d \end{pmatrix} \] is given by \[ \frac{1}{ad - bc} \begin{pmatrix} d & -b \\ -c & a \end{pmatrix} \] Now, let's calculate the determinant \(ad - bc\) for our matrix \(A\): - \(a = -1\), \(b = -6\), \(c = -3\), \(d = -10\) - \(ad = (-1)(-10) = 10\) - \(bc = (-6)(-3) = 18\) - Therefore, \(ad - bc = 10 - 18 = -8\) Now we can find the inverse matrix \(A^{-1}\): \[ A^{-1} = \frac{1}{-8} \begin{pmatrix} -10 & 6 \\ 3 & -1 \end{pmatrix} = \begin{pmatrix} \frac{10}{8} & -\frac{6}{8} \\ -\frac{3}{8} & \frac{1}{8} \end{pmatrix} = \begin{pmatrix} \frac{5}{4} & -\frac{3}{4} \\ -\frac{3}{8} & \frac{1}{8} \end{pmatrix} \] Now, we can use the inverse matrix to solve for \(X\): \[ X = A^{-1}B \] Let's calculate \(X\): \[ X = \begin{pmatrix} \frac{5}{4} & -\frac{3}{4} \\ -\frac{3}{8} & \frac{1}{8} \end{pmatrix} \begin{pmatrix} 8 \\ 6 \end{pmatrix} \] Now, we will perform the matrix multiplication: 1. For \(x\): \[ x = \frac{5}{4} \cdot 8 + \left(-\frac{3}{4}\right) \cdot 6 = 10 - 4.5 = 5.5 \] 2. For \(y\): \[ y = -\frac{3}{8} \cdot 8 + \frac{1}{8} \cdot 6 = -3 + 0.75 = -2.25 \] Thus, the solution to the system of equations is: \[ x = 5.5, \quad y = -2.25 \] In summary, the inverse matrix used is: \[ A^{-1} = \begin{pmatrix} \frac{5}{4} & -\frac{3}{4} \\ -\frac{3}{8} & \frac{1}{8} \end{pmatrix} \] And the solution to the system is: \[ \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 5.5 \\ -2.25 \end{pmatrix} \]

Revisado y aprobado por el equipo de tutoría de UpStudy

error msg
Explicar
Simplifique esta solución

Extra Insights

To solve the system of equations using an inverse matrix approach, we first need to express it in the form \(AX = B\). The given equations can be rewritten as: \[ \begin{bmatrix} -1 & -6 \\ -3 & -10 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} 8 \\ 6 \end{bmatrix} \] Here, \(A = \begin{bmatrix} -1 & -6 \\ -3 & -10 \end{bmatrix}\) and \(B = \begin{bmatrix} 8 \\ 6 \end{bmatrix}\). Now, let's find the inverse of matrix \(A\), denoted as \(A^{-1}\). The inverse of a \(2 \times 2\) matrix \(\begin{bmatrix} a & b \\ c & d \end{bmatrix}\) is given by \(\frac{1}{ad-bc} \begin{bmatrix} d & -b \\ -c & a \end{bmatrix}\). Calculating the determinant \(ad - bc\): \[ (-1)(-10) - (-6)(-3) = 10 - 18 = -8 \] Thus, the inverse of \(A\) is: \[ A^{-1} = \frac{1}{-8} \begin{bmatrix} -10 & 6 \\ 3 & -1 \end{bmatrix} = \begin{bmatrix} \frac{10}{8} & -\frac{6}{8} \\ -\frac{3}{8} & \frac{1}{8} \end{bmatrix} = \begin{bmatrix} \frac{5}{4} & -\frac{3}{4} \\ -\frac{3}{8} & \frac{1}{8} \end{bmatrix} \] Now, multiplying both sides of \(AX = B\) by \(A^{-1}\): \[ X = A^{-1}B \] Calculating: \[ X = \begin{bmatrix} \frac{5}{4} & -\frac{3}{4} \\ -\frac{3}{8} & \frac{1}{8} \end{bmatrix} \begin{bmatrix} 8 \\ 6 \end{bmatrix} = \begin{bmatrix} \frac{5}{4} \cdot 8 - \frac{3}{4} \cdot 6 \\ -\frac{3}{8} \cdot 8 + \frac{1}{8} \cdot 6 \end{bmatrix} \] Calculating the first entry: \[ \frac{5}{4} \cdot 8 - \frac{3}{4} \cdot 6 = 10 - 4.5 = 5.5 \] Calculating the second entry: \[ -\frac{3}{8} \cdot 8 + \frac{1}{8} \cdot 6 = -3 + \frac{3}{4} = -2.25 \] Thus, the solution to the system of equations is: \[ X = \begin{bmatrix} 5.5 \\ -2.25 \end{bmatrix} \] And the inverse matrix used is \[ A^{-1} = \begin{bmatrix} \frac{5}{4} & -\frac{3}{4} \\ -\frac{3}{8} & \frac{1}{8} \end{bmatrix}. \]

¡Prueba Premium ahora!
¡Prueba Premium y hazle a Thoth AI preguntas de matemáticas ilimitadas ahora!
Quizas mas tarde Hazte Premium
Estudiar puede ser una verdadera lucha
¿Por qué no estudiarlo en UpStudy?
Seleccione su plan a continuación
Prima

Puedes disfrutar

Empieza ahora
  • Explicaciones paso a paso
  • Tutores expertos en vivo 24/7
  • Número ilimitado de preguntas
  • Sin interrupciones
  • Acceso completo a Respuesta y Solución
  • Acceso completo al chat de PDF, al chat de UpStudy y al chat de navegación
Básico

Totalmente gratis pero limitado

  • Solución limitada
Bienvenido a ¡Estudia ahora!
Inicie sesión para continuar con el recorrido de Thoth AI Chat
Continuar con correo electrónico
O continuar con
Al hacer clic en "Iniciar sesión", acepta nuestros términos y condiciones. Términos de Uso & Política de privacidad