O. Algebraik kasrning maxrajimı: 1) \( \frac{2 a}{a-b} \) bo' Isa, \( a^{2}-b^{2} \) ko'rinishiga keltiring. 2) \( \frac{-3 c}{x+y} \) bo' \( s \mathrm{sa},(x+y)^{2} \) ko'rinishiga keltiring. 3) \( \frac{2 a}{x-1} \) bo'lsa, \( x^{3}-1 \) ko'rinishiga keltiring. 4) \( \frac{1}{m^{2}-m n+n^{2}} \) bo'lsa, \( m^{3}+n^{3} \) ko'rinishiga keltiring.
Real Tutor Solution
Answer
Solution
Sign in to Unlock Answers for Free!
A Learning Platform Trusted by Millions of Real Students and Teachers.
Reviewed and approved by the UpStudy tutoring team
The Deep Dive
1) \( \frac{2 a}{a-b} \) ifodasini \( a^{2}-b^{2} \) ko'rinishida ifodalash uchun, avval \( a^2 - b^2 = (a-b)(a+b) \) formulasi yordamida izohlaymiz. Shunday qilib, bu ifoda quyidagicha yozilishi mumkin: \( \frac{2 a}{a-b} = \frac{2 a(a+b)}{(a-b)(a+b)} = \frac{2 a(a+b)}{a^2-b^2} \). 2) \( \frac{-3 c}{x+y} \) ifodasini \( (x+y)^2 \) ko'rinishida ifodalash uchun, \( (x+y)^2 = x^2 + 2xy + y^2 \) formulasi qo'llaniladi. Shunday qilib, \( \frac{-3c}{x+y} = \frac{-3c}{\sqrt{(x^2 + 2xy + y^2)}} \) deb yozish mumkin. 3) \( \frac{2 a}{x-1} \) ifodasini \( x^{3}-1 \) ko'rinishiga keltirish uchun, \( x^3 - 1 = (x-1)(x^2 + x + 1) \) deb bilamiz. Demak, \( \frac{2 a}{x-1} = \frac{2 a}{(x-1)(x^2 + x + 1)} = \frac{2 a}{x^3 - 1} \) deb yozish mumkin. 4) \( \frac{1}{m^{2}-mn+n^{2}} \) ifodasini \( m^{3}+n^{3} \) ko'rinishida ifodalash uchun, \( m^3 + n^3 = (m+n)(m^2 - mn + n^2) \) formulasidan foydalangan holda \( \frac{1}{m^2 - mn + n^2} = \frac{1}{(m+n)(m^2 - mn + n^2)} \) deb yozamiz.