Question
upstudy study bank question image url

MATRIKS 1. SPMU Diberi bahawa matriks \( P=\left|\begin{array}{cc}8 & h \\ 4 & -3\end{array}\right| \). It is given that matrix \( P=\left[\begin{array}{cc}8 & h \\ 4 & -3\end{array}\right] \). (a) Jika matriks \( P \) tidak mempunyai songsangan, tentukan nilai \( h \). [2 martah] If matrix \( P \) has no inverse, determine the value of \( h \). [2 marks] (b) Seterusnya, cari matriks \( M \) jika \( P^{2}+M=3 P \). [3 martah] Hence, find matrix \( M \) if \( P^{2}+M=3 P \). [ 3 merist] Jawapan / Answer: (a) (b)

Ask by Cervantes Pollard. in Malaysia
Jan 21,2025

Real Tutor Solution

Tutor-Verified Answer

Answer

**(a) Nilai \( h \) adalah \( -6 \).** **(b) Matriks \( M \) adalah:** \[ M = \begin{bmatrix} -16 & 12 \\ -8 & 6 \end{bmatrix} \]

Solution

**Jawapan / Answer:** **(a) Menentukan nilai \( h \) apabila matriks \( P \) tidak mempunyai songsangan** Matriks \( P \) tidak mempunyai songsangan jika determinannya adalah sifar. Determinan matriks \( P \) adalah: \[ \det(P) = (8)(-3) - (4)(h) = -24 - 4h \] Untuk menjadikan determinan sama dengan sifar: \[ -24 - 4h = 0 \\ -4h = 24 \\ h = -6 \] **Nilai \( h \) ialah \( -6 \).** --- **(b) Mencari matriks \( M \) jika \( P^{2} + M = 3P \)** Diberi \( h = -6 \), matriks \( P \) menjadi: \[ P = \begin{bmatrix} 8 & -6 \\ 4 & -3 \end{bmatrix} \] Pertama, kita perlu mengira \( P^{2} \): \[ P^{2} = P \times P = \begin{bmatrix} 8 & -6 \\ 4 & -3 \end{bmatrix} \times \begin{bmatrix} 8 & -6 \\ 4 & -3 \end{bmatrix} \] \[ P^{2} = \begin{bmatrix} (8 \times 8) + (-6 \times 4) & (8 \times -6) + (-6 \times -3) \\ (4 \times 8) + (-3 \times 4) & (4 \times -6) + (-3 \times -3) \end{bmatrix} = \begin{bmatrix} 64 - 24 & -48 + 18 \\ 32 - 12 & -24 + 9 \end{bmatrix} = \begin{bmatrix} 40 & -30 \\ 20 & -15 \end{bmatrix} \] Kemudian, kita gunakan persamaan \( P^{2} + M = 3P \) untuk mencari \( M \): \[ 3P = 3 \times \begin{bmatrix} 8 & -6 \\ 4 & -3 \end{bmatrix} = \begin{bmatrix} 24 & -18 \\ 12 & -9 \end{bmatrix} \] \[ M = 3P - P^{2} = \begin{bmatrix} 24 & -18 \\ 12 & -9 \end{bmatrix} - \begin{bmatrix} 40 & -30 \\ 20 & -15 \end{bmatrix} = \begin{bmatrix} 24-40 & -18-(-30) \\ 12-20 & -9-(-15) \end{bmatrix} = \begin{bmatrix} -16 & 12 \\ -8 & 6 \end{bmatrix} \] **Matriks \( M \) adalah:** \[ M = \begin{bmatrix} -16 & 12 \\ -8 & 6 \end{bmatrix} \]

Reviewed and approved by the UpStudy tutoring team

error msg
Explain
Simplify this solution

Extra Insights

Untuk menentukan nilai \( h \) supaya matriks \( P \) tidak mempunyai songsangan, kita perlu memastikan bahawa penentu matriks \( P \) adalah sifar. Penentu bagi matriks \( P \) yang diberikan adalah: \[ \text{det}(P) = 8 \cdot (-3) - 4 \cdot h = -24 - 4h. \] Untuk tiada songsangan, kita set penentu ini sama dengan sifar: \[ -24 - 4h = 0 \implies 4h = -24 \implies h = -6. \] Jadi, nilai \( h \) adalah -6. --- Seterusnya, kita cari matriks \( M \) dengan menggunakan persamaan \( P^{2} + M = 3P \). Pertama, kita perlu mengira \( P^{2} \): \[ P^2 = P \cdot P = \left[ \begin{array}{cc} 8 & h \\ 4 & -3 \end{array} \right] \cdot \left[ \begin{array}{cc} 8 & h \\ 4 & -3 \end{array} \right] = \left[ \begin{array}{cc} 8 \cdot 8 + h \cdot 4 & 8h + h \cdot (-3) \\ 4 \cdot 8 + (-3) \cdot 4 & 4h + (-3)(-3) \end{array} \right]. \] Teruskan kiraan tersebut dan kemudiannya dapatkan \( M \) daripada persamaan tersebut. Setelah memperoleh \( P^2 \), kita boleh selesaikan bagi \( M \) dan akhirnya berikan hasil yang diperlukan. Profit!

Latest Algebra Questions

Try Premium now!
Try Premium and ask Thoth AI unlimited math questions now!
Maybe later Go Premium
Study can be a real struggle
Why not UpStudy it?
Select your plan below
Premium

You can enjoy

Start now
  • Step-by-step explanations
  • 24/7 expert live tutors
  • Unlimited number of questions
  • No interruptions
  • Full access to Answer and Solution
  • Full Access to PDF Chat, UpStudy Chat, Browsing Chat
Basic

Totally free but limited

  • Limited Solution
Welcome to UpStudy!
Please sign in to continue the Thoth AI Chat journey
Continue with Email
Or continue with
By clicking “Sign in”, you agree to our Terms of Use & Privacy Policy