Question
upstudy study bank question image url

Find the limit: \( \lim _{x \rightarrow \infty}\left(\sqrt{x^{2}+5 x}-\sqrt{x^{2}-5 x}\right) \)

Ask by Marsh Curry. in Malawi
Feb 03,2025

Real Tutor Solution

Tutor-Verified Answer

Answer

The limit is 5.

Solution

Calculate the limit \( \lim _{x\rightarrow \infty}(\sqrt{x^{2}+5x}-\sqrt{x^{2}-5x}) \). Evaluate the limit by following steps: - step0: Evaluate using transformations: \(\lim _{x\rightarrow +\infty}\left(\sqrt{x^{2}+5x}-\sqrt{x^{2}-5x}\right)\) - step1: Multiply by the Conjugate: \(\lim _{x\rightarrow +\infty}\left(\frac{10x}{\sqrt{x^{2}+5x}+\sqrt{x^{2}-5x}}\right)\) - step2: Rearrange the terms: \(\lim _{x\rightarrow +\infty}\left(\frac{10x}{\left(\sqrt{1+\frac{5}{x}}+\sqrt{1-\frac{5}{x}}\right)x}\right)\) - step3: Reduce the fraction: \(\lim _{x\rightarrow +\infty}\left(\frac{10}{\sqrt{1+\frac{5}{x}}+\sqrt{1-\frac{5}{x}}}\right)\) - step4: Rewrite the expression: \(\frac{\lim _{x\rightarrow +\infty}\left(10\right)}{\lim _{x\rightarrow +\infty}\left(\sqrt{1+\frac{5}{x}}+\sqrt{1-\frac{5}{x}}\right)}\) - step5: Evaluate: \(\frac{10}{\lim _{x\rightarrow +\infty}\left(\sqrt{1+\frac{5}{x}}+\sqrt{1-\frac{5}{x}}\right)}\) - step6: Evaluate: \(\frac{10}{2}\) - step7: Reduce the numbers: \(\frac{5}{1}\) - step8: Calculate: \(5\) The limit of the expression \( \lim _{x \rightarrow \infty}(\sqrt{x^{2}+5x}-\sqrt{x^{2}-5x}) \) as \( x \) approaches infinity is 5.

Reviewed and approved by the UpStudy tutoring team

error msg
Explain
Simplify this solution

Extra Insights

To evaluate the limit \[ L = \lim_{x \rightarrow \infty}\left(\sqrt{x^{2}+5x}-\sqrt{x^{2}-5x}\right), \] we can start by simplifying the expression under the limit. A common strategy for limits involving square roots is to multiply by the conjugate. We multiply the expression by \[ \frac{\sqrt{x^2 + 5x} + \sqrt{x^2 - 5x}}{\sqrt{x^2 + 5x} + \sqrt{x^2 - 5x}}, \] to rationalize the difference of the square roots: \[ L = \lim_{x \rightarrow \infty} \frac{\left(\sqrt{x^2 + 5x} - \sqrt{x^2 - 5x}\right)\left(\sqrt{x^2 + 5x} + \sqrt{x^2 - 5x}\right)}{\sqrt{x^2 + 5x} + \sqrt{x^2 - 5x}}. \] The numerator simplifies to \[ (\sqrt{x^2 + 5x})^2 - (\sqrt{x^2 - 5x})^2 = (x^2 + 5x) - (x^2 - 5x) = 10x. \] Thus, we have: \[ L = \lim_{x \rightarrow \infty} \frac{10x}{\sqrt{x^2 + 5x} + \sqrt{x^2 - 5x}}. \] Next, we can simplify the denominator: \[ \sqrt{x^2 + 5x} = \sqrt{x^2(1 + \frac{5}{x})} = x\sqrt{1 + \frac{5}{x}}, \] and \[ \sqrt{x^2 - 5x} = \sqrt{x^2(1 - \frac{5}{x})} = x\sqrt{1 - \frac{5}{x}}. \] Now, substituting back into our expression for \(L\): \[ L = \lim_{x \rightarrow \infty} \frac{10x}{x\left(\sqrt{1 + \frac{5}{x}} + \sqrt{1 - \frac{5}{x}}\right)} = \lim_{x \rightarrow \infty} \frac{10}{\sqrt{1 + \frac{5}{x}} + \sqrt{1 - \frac{5}{x}}}. \] As \(x \rightarrow \infty\), both \(\frac{5}{x} \rightarrow 0\), so the limit becomes: \[ L = \frac{10}{\sqrt{1 + 0} + \sqrt{1 - 0}} = \frac{10}{1 + 1} = \frac{10}{2} = 5. \] Thus, the final answer is: \[ \boxed{5}. \]

Related Questions

Latest Calculus Questions

Try Premium now!
Try Premium and ask Thoth AI unlimited math questions now!
Maybe later Go Premium
Study can be a real struggle
Why not UpStudy it?
Select your plan below
Premium

You can enjoy

Start now
  • Step-by-step explanations
  • 24/7 expert live tutors
  • Unlimited number of questions
  • No interruptions
  • Full access to Answer and Solution
  • Full Access to PDF Chat, UpStudy Chat, Browsing Chat
Basic

Totally free but limited

  • Limited Solution
Welcome to UpStudy!
Please sign in to continue the Thoth AI Chat journey
Continue with Email
Or continue with
By clicking “Sign in”, you agree to our Terms of Use & Privacy Policy