Question
upstudy study bank question image url

A culture initially has \( P_{0} \) number of Acinetobacter baumannii bacteria. At \( t=1 \) hour, the number of bacteria is measured to be \( \frac{4}{3} P_{0} \). If the rate of growth is proportional to the number of bacteria \( P(t) \) present at time \( t \), determine the time neccessary for the number of bacteria to quadruple.

Ask by Bates Santiago. in South Africa
Feb 03,2025

Real Tutor Solution

Tutor-Verified Answer

Answer

It takes approximately 4.82 hours for the number of Acinetobacter baumannii bacteria to quadruple.

Solution

To determine the time necessary for the number of _Acinetobacter baumannii_ bacteria to quadruple, we'll analyze the growth process step by step. ### 1. **Understanding the Growth Model** The rate of growth is proportional to the current number of bacteria, which implies **exponential growth**. The mathematical model for exponential growth is: \[ \frac{dP}{dt} = k P(t) \] where: - \( P(t) \) is the number of bacteria at time \( t \), - \( k \) is the growth constant. The solution to this differential equation is: \[ P(t) = P_0 e^{kt} \] where \( P_0 \) is the initial number of bacteria. ### 2. **Determining the Growth Constant \( k \)** We're given that at \( t = 1 \) hour, the number of bacteria is \( \frac{4}{3} P_0 \). Plugging these values into the equation: \[ \frac{4}{3} P_0 = P_0 e^{k \cdot 1} \] Simplifying: \[ \frac{4}{3} = e^k \] Taking the natural logarithm of both sides: \[ k = \ln\left(\frac{4}{3}\right) \approx 0.287682 \, \text{hr}^{-1} \] ### 3. **Calculating the Time to Quadruple** We want to find the time \( t \) when the number of bacteria quadruples, i.e., \( P(t) = 4P_0 \): \[ 4P_0 = P_0 e^{kt} \] Simplifying: \[ 4 = e^{kt} \] Taking the natural logarithm of both sides: \[ \ln(4) = kt \] Solving for \( t \): \[ t = \frac{\ln(4)}{k} = \frac{\ln(4)}{\ln\left(\frac{4}{3}\right)} \] Plugging in the values: \[ t \approx \frac{1.386294}{0.287682} \approx 4.817 \, \text{hours} \] ### **Conclusion** It takes approximately **4.82 hours** for the number of _Acinetobacter baumannii_ bacteria to quadruple under the given growth conditions. **Answer:** A little under 4.82 hours are needed for the bacterial population to quadruple.

Reviewed and approved by the UpStudy tutoring team

error msg
Explain
Simplify this solution

The Deep Dive

To solve this problem, we start by noting that the growth of the bacteria is described by the exponential growth model. This is expressed with the following differential equation: \[ \frac{dP}{dt} = kP \] where \( k \) is the growth constant. The solution to this equation gives us: \[ P(t) = P_{0} e^{kt} \] At \( t=1 \) hour, we know the number of bacteria is \( \frac{4}{3} P_{0} \). Plugging this into our equation: \[ \frac{4}{3} P_{0} = P_{0} e^{k \cdot 1} \] Dividing both sides by \( P_{0} \) (assuming \( P_{0} > 0 \)) gives us: \[ \frac{4}{3} = e^{k} \] Taking the natural logarithm of both sides yields: \[ k = \ln\left(\frac{4}{3}\right) \] Next, we want to determine the time required for the population to quadruple; this means we want to find \( t \) such that: \[ P(t) = 4P_{0} \] Substituting into our growth equation: \[ 4P_{0} = P_{0} e^{kt} \] Dividing by \( P_{0} \): \[ 4 = e^{kt} \] Taking the natural logarithm of both sides: \[ \ln(4) = kt \] Substituting in our expression for \( k \): \[ \ln(4) = \ln\left(\frac{4}{3}\right) t \] Now, isolating \( t \) gives us: \[ t = \frac{\ln(4)}{\ln\left(\frac{4}{3}\right)} \] Using a calculator, we can estimate the values: \[ \ln(4) \approx 1.3863 \] \[ \ln\left(\frac{4}{3}\right) \approx 0.2877 \] Thus, \[ t \approx \frac{1.3863}{0.2877} \approx 4.83 \text{ hours} \] Therefore, the time necessary for the number of bacteria to quadruple is approximately **4.83 hours**.

Related Questions

Latest Calculus Questions

\( \qquad \) . .2025 Праклнческая работа N.16. Формулы н прави Исследованне функций с помощью пронзводн A60.1bшee н нанsенbшee значення Функции. Часть 1. Формулы п правила дифференцирования. Теоретический матернал для изучения: Учебннк по алтебре н началам математнческого ана.твза (автор Мордковнч А.Г.) §28. Oтветьте на вопросы: 1. Запишнгте формулы дифферениирования (чему равны производные следуюших элеменгарных функииі̆): \( C \) (const), \( x,(k x+m),\left(x^{2}\right), \frac{1}{x^{1}} \sqrt{x}, \sin x, \cos x \) 2. Выпииите правила длфференцирования (можно в виде формул): пропзводная суммы ити разности, что можно делать с постоянным множителем, производная произведения, производная частного. 3. Запишите формулы дифференцирования функшй \( \chi^{n} \) tgx, \( \operatorname{ctg} x \). 4. Запишите правило дифференцирования функции (kx+m). Выполните залания: 1. Найдите производные следующих функиий: a) \( \left.y=x^{4}-7 x^{2} ; 6\right)^{y-8 \sqrt{x}+\frac{1}{x}} \); B) \( y=8 \operatorname{tg} x-\sin x \); r) \( y=\left(x^{2}+3\right)\left(x^{4}-1\right) \) 2. Найдите значение пронзводной функини в точке хо: a) \( y=x^{3}+8 x-4, x_{0}=1 \). (0) \( r=\frac{1}{r}-6, x_{0}=1 \) ; B) \( y=\sqrt{x}+5 . x_{n}=4 \)
Calculus Russia Feb 04, 2025
Try Premium now!
Try Premium and ask Thoth AI unlimited math questions now!
Maybe later Go Premium
Study can be a real struggle
Why not UpStudy it?
Select your plan below
Premium

You can enjoy

Start now
  • Step-by-step explanations
  • 24/7 expert live tutors
  • Unlimited number of questions
  • No interruptions
  • Full access to Answer and Solution
  • Full Access to PDF Chat, UpStudy Chat, Browsing Chat
Basic

Totally free but limited

  • Limited Solution
Welcome to UpStudy!
Please sign in to continue the Thoth AI Chat journey
Continue with Email
Or continue with
By clicking “Sign in”, you agree to our Terms of Use & Privacy Policy