Question
upstudy study bank question image url

QUESTION 4 (Start on a now page.) Dancers have to. leam many skills, including how to land correctly. A dancer of mass 50 kg leaps Thto the air and lands feet first on the ground. She lands on the ground with a velocity of \( 5 \mathrm{~m} \cdot \mathrm{~s}^{-1} \). As she lands, she bends her knees and comes to a complete stop in 0,2 seconds: \( 4.1 \quad \) Calculate the momentum with which the dancer reaches the ground. \( 4.2 \quad \) Define the term impulse of a force, Calculate the magnitude of the net force acting on the dancer as she lands. er knees. \( 4 \quad \) Will the force now be GREATER THAN, SMALLER THAN or EQUAL TO the dancer performs the same jump as before but lands without bending force calculated in QUESTION 4.3 ? Give a reason for the answer to QUESTION 4.4 .

Ask by Chambers Ruiz. in South Africa
Jan 22,2025

Real Tutor Solution

Tutor-Verified Answer

Answer

**4.1:** The dancer's momentum upon landing is **250 kg·m/s** downward. **4.2:** Impulse is the change in momentum caused by a force over time. The net force acting on the dancer as she lands is **1250 N** upward. **4.4:** The force is **smaller than** the force calculated in 4.2 because bending the knees increases the time over which the dancer stops, reducing the required force during landing.

Solution

Sign in to Unlock Answers for Free!

A Learning Platform Trusted by Millions of Real Students and Teachers.

star-icon Unlock

Reviewed and approved by the UpStudy tutoring team

Bonus Knowledge

To find the momentum with which the dancer reaches the ground, you can use the formula for momentum, which is the product of mass and velocity. So, for our dancer with a mass of 50 kg and a landing velocity of 5 m/s, the momentum (p) would be calculated as \( p = m \cdot v = 50 \, \text{kg} \cdot 5 \, \text{m/s} = 250 \, \text{kg} \cdot \text{m/s} \). Impulse is the change in momentum that an object experiences when a force is applied over time. It can be calculated as the product of the average force (F) and the time duration (Δt) for which the force acts. In this case, impulse (J) helps us understand how forces affect motion during events like landing, where rapid changes occur. Now, let’s think about the net force acting on the dancer as she lands! We know she brings herself to a complete stop, which means we must first calculate the change in momentum. Using a time duration of 0.2 seconds, we can apply the impulse-momentum theorem here to find the average force which, as it turns out, will be greater than if she hadn't bent her knees, helping to reduce the impact. If she lands without bending her knees, the force acting on her will definitely be greater than the calculated force when she does bend her knees! The reasoning behind this is that bending the knees increases the time taken for the dancer to come to a stop, thus spreading the impact force over a longer duration and allowing her body to absorb the energy. Without that, the landing becomes much harsher and the force spikes, which the body is less equipped to handle!

Related Questions

Latest Physics Questions

EXERCICE 3 : ( 5 points) Au cours d'une promenade ton voisin de classe a assisté à une scène. Il a vu un enfant qui s'amusait à plonger dans l'eau d'une rivière à partir du point \( C_{0} \) d'un rocher. Cet enfant, considéré comme un point matériel, voulait attraper un ballon flottant au point \( \vec{A} d{ }^{-1} \) cettel rivière. Ton voisin veut déterminer la valeur de la vitesse \( \vec{V}_{0} \) avec laquelle l'enfant a fait ce plongeon du point de départ \( \mathrm{C}_{0} \) jusqu'au point A (voir schéma ci-contre). A la date \( t=0 \) s, l'enfant s'est élancé du rocher avec une vitesse \( \overrightarrow{V_{0}} \), de valeur \( V_{0} \), incliné d'un angle \( \alpha 0 \) par rapport à l'horizontale. La valeur \( V_{0} \) peut varier et le mouvement du centre d'inertie \( C \) de l'enfant s'effectue dans le référentiel terrestre supposé galiléen muni du repère \( (0, \vec{\imath}, \vec{j}) \). A la date \( t=O \) s, le centre d'inertie de l'enfant, de masse \( m \), est en \( C_{0} \) tel que \( O C_{0}=2 \mathrm{~m} \). Les frottements contre l'air sont négligés lors du plongeon de cet enfant. Données: \( g=9,8 \mathrm{~m} \cdot \mathrm{~s}^{-2} ; \alpha_{0}=45^{\circ} ; \quad O A=2 \mathrm{~m} \) Ton voisin te sollicite pour la détermination de \( V_{0} \). 1. Montre qu'au cours de son plongeon, le vecteur accélération \( \vec{a} \) de l'enfant est égal au vecteur champ de pesanteur uniforme \( \vec{g} \). 2. Détermine les équations horaires du mouvement de l'enfant dans le repère \( (0, \vec{\imath}, \vec{\jmath}) \). 3. Etablis l'équation littérale de la trajectoire \( y=f(x) \) de l'enfant dans le repère \( (0, \vec{\imath}, \vec{j}) \). 4. Détermine les coordonnées \( X_{A} \) et \( Y_{A} \) de l'enfant lorsqu'il arrive au point \( A \) où se trouve le ballon. 5. Déduis de la réponse à la question précédente la valeur de \( V_{0} \) pour qu'à l'issu de ce plongeon l'enfant se retrouve au point A de cette rivière.
Physics Côte d'Ivoire Jan 22, 2025
Try Premium now!
Try Premium and ask Thoth AI unlimited math questions now!
Maybe later Go Premium
Study can be a real struggle
Why not UpStudy it?
Select your plan below
Premium

You can enjoy

Start now
  • Step-by-step explanations
  • 24/7 expert live tutors
  • Unlimited number of questions
  • No interruptions
  • Full access to Answer and Solution
  • Full Access to PDF Chat, UpStudy Chat, Browsing Chat
Basic

Totally free but limited

  • Limited Solution
Welcome to UpStudy!
Please sign in to continue the Thoth AI Chat journey
Continue with Email
Or continue with
By clicking “Sign in”, you agree to our Terms of Use & Privacy Policy