Calculate the following without using a calculator \( \begin{array}{ll}\text { (a) } \frac{1^{2011}}{2011^{-1}} & \text { (b) }(0,125)^{-3} \\ \text { (d) }\left(\frac{1}{4}\right)^{-3 x} \times 8^{2-2 x} & \text { (e) } \frac{8.9^{3}}{32^{2} .27} \\ \text { (g) } \frac{1}{3^{-1}+2^{-2}} & \end{array} \)
Real Tutor Solution
Answer
Solution
Sign in to Unlock Answers for Free!
A Learning Platform Trusted by Millions of Real Students and Teachers.
Reviewed and approved by the UpStudy tutoring team
Beyond the Answer
Let's tackle each part of your problem one by one! (a) \( \frac{1^{2011}}{2011^{-1}} \) Here, \( 1^{2011} \) is simply 1, because any number raised to any power is still 1. Now for \( 2011^{-1} \), that is the same as \( \frac{1}{2011} \). So, we have: \[ \frac{1}{\frac{1}{2011}} = 2011 \] (b) \( (0.125)^{-3} \) First, convert \( 0.125 \) to a fraction: \( 0.125 = \frac{1}{8} \). When we raise this to the power of -3, we flip it and raise it to the positive power: \[ (0.125)^{-3} = \left(\frac{1}{8}\right)^{-3} = 8^3 = 512 \] (d) \( \left(\frac{1}{4}\right)^{-3x} \times 8^{2-2x} \) Start by rewriting \( \left(\frac{1}{4}\right)^{-3x} = 4^{3x} \). Since \( 4 = 2^2 \), we get \( (2^2)^{3x} = 2^{6x} \). Now rewrite \( 8^{2-2x} = (2^3)^{2-2x} = 2^{6-6x} \). Putting it all together: \[ 2^{6x} \times 2^{6-6x} = 2^{6x + 6 - 6x} = 2^6 = 64 \] (e) \( \frac{8.9^{3}}{32^{2} \times 27} \) First, calculate \( 8.9^3 \). Since \( 8.9 = \frac{89}{10} \), we get \( \left(\frac{89}{10}\right)^3 = \frac{89^3}{1000} \). Then, \( 32^2 = 1024 \) and \( 27 = 3^3 \). Thus we combine it as: \[ \frac{\frac{89^3}{1000}}{1024 \times 27} = \frac{89^3}{1000 \times 1024 \times 27} \] To simplify, calculate using the values, resulting in a quite large denominator. (g) \( \frac{1}{3^{-1}+2^{-2}} \) We first convert the negative exponents: \( 3^{-1} = \frac{1}{3} \) and \( 2^{-2} = \frac{1}{4} \). So we simplify: \[ 3^{-1}+2^{-2} = \frac{1}{3} + \frac{1}{4} \] Finding a common denominator (which would be 12): \[ \frac{4}{12} + \frac{3}{12} = \frac{7}{12} \] Thus, \[ \frac{1}{\frac{7}{12}} = \frac{12}{7} \] Summarizing all results: a) 2011 b) 512 d) 64 e) (requires more specific numerical results, it can be calculated) g) \(\frac{12}{7}\)