Question
upstudy study bank question image url

NOBSERVADOR DE 1,65 METROS MIRA UN NIDO EN UN ARBOL BAJO UN ANGULO DE ELEVACIONN DE \( 30^{\circ} \). ST ISERVADOR SE HALLA A 3 METROS DEL ARBOL. HALLAR LA ALTURA DEL MISMO.

Ask by Malone Curry. in Argentina
Nov 28,2024

Real Tutor Solution

Tutor-Verified Answer

Answer

La altura del nido es aproximadamente 3.382 metros. La altura total del árbol es aproximadamente 5.032 metros.

Solution

Sign in to Unlock Answers for Free!

A Learning Platform Trusted by Millions of Real Students and Teachers.

star-icon Unlock

Reviewed and approved by the UpStudy tutoring team

Extra Insights

Para resolver este problema, podemos usar un poco de trigonometría. Imaginemos un triángulo donde la base es la distancia del observador al árbol (3 metros) y el ángulo de elevación es \(30^{\circ}\). Usamos la tangente, que relaciona el ángulo, la altura del árbol (H) y la distancia (3 metros): \[ \tan(30^{\circ}) = \frac{H - altura\ del\ observador}{3} \] Sabemos que \(\tan(30^{\circ}) = \frac{1}{\sqrt{3}}\). Sustituyendo, tenemos: \[ \frac{1}{\sqrt{3}} = \frac{H - 1.65}{3} \] Multiplicamos ambos lados por 3: \[ 3/\sqrt{3} = H - 1.65 \] \[ \sqrt{3} = H - 1.65 \] \[ H = \sqrt{3} + 1.65 \] Calculamos \(H\). Dado que \(\sqrt{3} \approx 1.73\), entonces: \[ H \approx 1.73 + 1.65 \approx 3.38\ metros \] La altura total del árbol es aproximadamente 3.38 metros. ¡Un nido bien situado!

Related Questions

Latest Trigonometry Questions

Try Premium now!
Try Premium and ask Thoth AI unlimited math questions now!
Maybe later Go Premium
Study can be a real struggle
Why not UpStudy it?
Select your plan below
Premium

You can enjoy

Start now
  • Step-by-step explanations
  • 24/7 expert live tutors
  • Unlimited number of questions
  • No interruptions
  • Full access to Answer and Solution
  • Full Access to PDF Chat, UpStudy Chat, Browsing Chat
Basic

Totally free but limited

  • Limited Solution
Welcome to UpStudy!
Please sign in to continue the Thoth AI Chat journey
Continue with Email
Or continue with
By clicking “Sign in”, you agree to our Terms of Use & Privacy Policy