8) Determine if the lengths 3,9 , and 10 form an acute, right, or obtuse triangle, or if they do-not form a triangle at all. not a triangle acute right obtuse
Real Tutor Solution
Answer
Solution
Reviewed and approved by the UpStudy tutoring team
Mind Expander
To determine if the lengths 3, 9, and 10 can form a triangle, we can use the triangle inequality theorem, which states that the sum of the lengths of any two sides must be greater than the length of the remaining side. Here, 3 + 9 = 12, which is greater than 10; 3 + 10 = 13, which is greater than 9; and 9 + 10 = 19, which is greater than 3. Since all conditions are satisfied, these sides do indeed form a triangle! Next, to classify the triangle, we utilize the Pythagorean theorem. If the square of the longest side (10) is greater than the sum of the squares of the other two sides (3 and 9), then it's an obtuse triangle. Calculating: 10² = 100 and 3² + 9² = 9 + 81 = 90. Since 100 > 90, this triangle is obtuse!